• 제목/요약/키워드: Equivalent Mechanical Model

검색결과 494건 처리시간 0.029초

스테빌라이저 링크의 종류별 강도 해석을 통한 융합 기술연구 (Study on Convergence Technique through Strength Analysis of Stabilizer Link by Type)

  • 조재웅
    • 한국융합학회논문지
    • /
    • 제6권1호
    • /
    • pp.57-63
    • /
    • 2015
  • 본 연구에서는 자동차의 스테빌라이저 링크를 모델로 하여 로워암과 연결되는 곳에 고정을 하고 모멘트를 가한다. Model 1, 2 및 3는 각각 길이 조정형, 일반형 및 일체형들이다. 이 모델들은 CATIA와 ANSYS로 설계 및 강도해석을 통한 융합 기술을 수행함으로서 연구된다. Model 3의 최대 등가응력이 가장 작음으로서 Model 3가 3개의 모델들 중 가장 큰 하중을 견딜 수 있다. 피로 해석으로서는 Model 3가 응력 상태의 빈도수가 일어나는 구간이 가장 작음으로서 세가지 모델 중 가장 안정적이다. 그 다음으로 Model 1, Model 2 순으로 안정적임으로서 응력 상태의 빈도로서 구간 수가 커지고 불안정성이 더 커진다. 그리고 디자인 면에서의 융합 기술로의 접목도 가능하여 미적인 감각을 나타낼 수 있다.

Mechanical model for seismic response assessment of lightly reinforced concrete walls

  • Brunesi, E.;Nascimbene, R.;Pavese, A.
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.461-481
    • /
    • 2016
  • The research described in this paper investigates the seismic behaviour of lightly reinforced concrete (RC) bearing sandwich panels, heavily conditioned by shear deformation. A numerical model has been prepared, within an open source finite element (FE) platform, to simulate the experimental response of this emerging structural system, whose squat-type geometry affects performance and failure mode. Calibration of this equivalent mechanical model, consisting of a group of regularly spaced vertical elements in combination with a layer of nonlinear springs, which represent the cyclic behaviour of concrete and steel, has been conducted by means of a series of pseudo-static cyclic tests performed on single full-scale prototypes with or without openings. Both cantilevered and fixed-end shear walls have been analyzed. After validation, this numerical procedure, including cyclic-related mechanisms, such as buckling and subsequent slippage of reinforcing re-bars, as well as concrete crushing at the base of the wall, has been used to assess the capacity of two- and three-dimensional low- to mid-rise box-type buildings and, hence, to estimate their strength reduction factors, on the basis of conventional pushover analyses.

이산형 열-음향 모델을 이용한 부하 변동시 가스터빈 연소 불안정 특성 (Combustion Instability of Gas Turbine with Segmented Dynamic Thermo-Acoustic Model under Load Follow-Up)

  • 정지웅;한재영;정진희;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제29권5호
    • /
    • pp.538-548
    • /
    • 2018
  • The thermo-acoustic instability in the combustion process of a gas turbine is caused by the interaction of the heat release mechanism and the pressure perturbation. These acoustic vibrations cause fatigue failure of the combustor and decrease the combustion efficiency. This study is to develop a segmented dynamic thermo-acoustic model to understand combustion instability of gas turbine. Therefore, this study required a dynamic analysis rather than static analysis, and developed a segmented model that can analyze the performance of the system over time using the Matlab/Simulink. The developed model can confirm the thermo-acoustic combustion instability and exhaust gas concentration in the combustion chamber according to the equivalent ratio change, and confirm the thermo-acoustic combustion instability for the inlet temperature and the load changes. As a result, segmented dynamic thermo-acoustic model has been developed to analyze combustion instability under the operating condition.

열 잉크젯 프린트헤드의 채널간 간섭현상의 모델링 (Modeling of Crosstalk Behaviors in Thermal Inkjet Print Heads)

  • 이유섭;손동기;김민수;국건
    • 대한기계학회논문집B
    • /
    • 제31권2호
    • /
    • pp.141-150
    • /
    • 2007
  • This paper presents a lumped model to predict crosstalk characteristics of thermally driven inkjet print heads. Using the lumped R-C model, heating characteristics of the head are predicted to be in agreement with IR temperature measurements. The inter-channel crosstalk is simulated using the lumped R-L network. The values of viscous flow resistance, R and flow inertance, L of connecting channels are adjusted to accord with the 3-D numerical simulation results of three adjacent jets. The crosstalk behaviors of a back shooter head as well as a top shooter head have been investigated. Predictions of the proposed lumped model on the meniscus oscillations are consistent with numerical simulation results. Comparison of the lumped model with experimental results identifies that abnormal two-drop ejection phenomena are related to the increased meniscus oscillations because of the more severe crosstalk effects at higher printing speeds. The degree of crosstalk has been quantified using cross-correlations between neighboring channels and a critical channel dimension for acceptable crosstalk has been proposed and validated with the numerical simulations. Our model can be used as a design tool for a better design of thermal inkjet print heads to minimize crosstalk effects.

Federated Information Mode-Matched Filters in ACC Environment

  • Kim Yong-Shik;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, a target tracking algorithm for tracking maneuvering vehicles is presented. The overall algorithm belongs to the category of an interacting multiple-model (IMM) algorithm used to detect multiple targets using fused information from multiple sensors. First, two kinematic models are derived: a constant velocity model for linear motions, and a constant-speed turn model for curvilinear motions. Fpr the constant-speed turn model, a nonlinear information filter is used in place of the extended Kalman filter. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. The model-matched filter used in multi-sensor environments takes the form of a federated nonlinear information filter. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. In this paper, the structural features and information sharing principle of the federated information filter are discussed. The performance of the suggested algorithm using a Monte Carlo simulation under the two patterns is evaluated.

모터사이클 디스크 브레이크 형상에 따른 방열해석에 관한 연구 (Study on Analysis of Heat Dissipation due to Shape of Motorcycle Disc Brake)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.100-107
    • /
    • 2013
  • This study aims to improve the heat performance of motor cycle disk due to the number of holes by analyzing 6 kinds of disk models. This disk performance depends on the efficiency at emitting the heat. To raise the efficiency of heat emission, holes with circle or another configuration are made on disks to emit heat fast. The distribution of temperature, heat flux, deformation and stress are analyzed. As the number of holes on disk increases, the performance of heat emission is improved. Equivalent stress is decreased and durability is improved as the number of holes on disk increases. Though the number of holes on disk is increased, the performances of heat emission and durability do not become better. The optimal model can be found by comparing models each other through this analysis result. Through this study result, the configuration of motor cycle disk is designed with optimal heat emission and durability by comparing models.

질량/스프링 계를 고려한 리니어 왕복 액추에이터 시스템의 등가 임피던스 모델링과 주파수 특성 해석 (Equivalent Impedance Modelling and Frequency Characteristic Analysis of Linear Oscillatory Actuator System Considering Mass/spring System)

  • 정상섭;장석명
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권7호
    • /
    • pp.370-378
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and spring is one approach to safeguarding the structure against excessive vibrations. In this paper, the lumped electrical circuit approach of mass/spring system is used to model the mechanical aspects according to the frequency. Therefore, the mass/spring system can be dealt with here and linked with the equivalent circuit of electric linear oscillatory actuator(LOA). Analysis models are two types of vibration control system, active mass damper(AMD) and hybrid mass damper(HMD). AMD consists of the moving coil LOA with mass only The LOA of HMD with mass and spring is composed of the fixed coil and the movable permanent magnet(PM) field part. The PM field part composed magnet modules and iron coke, is the damper marts itself. We Present the motional resistance and reactance of mass/spring system and the system impedance of AMD and HMD according to the frequency.

자전거 프레임 포크에서의 진동 해석 (Vibration Analysis at Bike Frame Fork)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.8-15
    • /
    • 2014
  • This study investigates structural and vibration analyses for three types of bike frame fork models. As long as the maximum equivalent stresses of these models are lower than the yield stress, the three models are considered to be safe structurally. Type 3, with a maximum equivalent stress of 169.23 MPa, has the lowest stress among the three models and the strongest strength. Types 1, 2 and 3 have natural frequencies lower than 270 Hz. Type 3, with a critical frequency of 118 Hz, has the best durability under vibration among the three models. In order to decrease the vibration transmitted to a bike rider riding on a rough road, the impact due to vibration can be relieved by selecting a Type 3 model from among the three models. The results of this study can be effectively utilized for the design of a bike frame fork as this allows the anticipation and prevention of damage caused by durability issues.

수평타원 환상공간에서의 자연대류에 관한 실험적 연구 (An experimental study on natural convection in the annuli between two horizontal elliptic cylinders)

  • 이재순;서정일;이택식
    • 대한기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.28-35
    • /
    • 1988
  • 본 연구는 이중벽용기에서 볼 수 있는 환상공간에 관한 자연대류 연구로서 용기속에 들어있는 유체의 열차폐를 위한 최적의 가스두께를 측정하기 위하여 필요한 지식을 얻기위한 열전달 연구이다.

2차원 압축공기-물의 압축성 이상 유동 수치 해석 (Numerical Analysis for Two-Dimensional Compressible and Two-Phase Flow Fields of Air-Water in Eulerian Grid Framework)

  • 박찬욱;이승수
    • 대한기계학회논문집B
    • /
    • 제32권6호
    • /
    • pp.429-445
    • /
    • 2008
  • Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of each phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe‘s approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated.