• Title/Summary/Keyword: Equivalent Electric Circuit

Search Result 243, Processing Time 0.024 seconds

A Frequency Tunable and Compact Metamaterial Peano Antenna (주파수 가변 및 소형 Metamaterial Peano Antenna)

  • Lee, Dong-Hyun;Jang, Kyung-Duk;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.866-872
    • /
    • 2007
  • In this paper, we present a frequency tunable and compact antenna which consists of a first-order Peano curve, two shorting posts, and two inductors which are serially connected between the posts and the edge of the Peano curve. By properly choosing the inductance of two inductors, the operating frequency of the antenna can be controlled without sacrificing the fractional bandwidth. To give good demonstration of the operating mechanism, the equivalent circuit of this antenna is included. To validate the simulation results, we have fabricated the several antennas of being integrated with different inductors, and the measured results show a good agreement with the simulated ones. The measured results reveal that the operating frequency is shifted from 1.47 GHz to 0.586 GHz without the decrease of the input impedance bandwidth. In case of integrating two inductors of 91nH and 470nH, the electric size of the antenna is only $0.0246 {\lambda}{\times}0.0246{\lambda}{\times}0.0114{\lambda}$. The measured fractional bandwidth$(S_{11}{\leq}-10 dB)$ and the radiation efficiency of the antenna are 5.22% and 47.25%, respectively.

Design of A Microwave Planar Broadband Power Divider (마이크로파대 평면형 광대역 전력 분배기 설계)

  • Park, Jun-Seok;Kim, hyeong-Seok;Ahn, Dal;Kang, Kwang-yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.651-658
    • /
    • 2001
  • A novel multi-section power divider configuration is proposed to obtain wide-band frequency performance up to microwave frequency region. Design procedures for the proposed microwave broadband power divider are composed of a planar multi-section three-ports hybrid and a waveguide transformer design procedures. The multi-section power divider is based on design theory of the optimum quarter-wave transformer. Furthermore, in order to obtain the broadband isolation performance between the two adjacent output ports, the odd mode equivalent circuit should be matched by using the lossy element such as resistor. The derived design formula for calculating these odd mode matching elements is based on the singly terminated filter design theory. The waveguide transformer section is designed to suppress the propagation of the higher order modes such as waveguide modes due to employing the metallic electric wall. Thus, each section of the designed waveguide transformer should be operated with evanescent mode over the whole design frequency band of the proposed microwave broadband power divider. This paper presents several simulations and experimental results of multi-section power divider to show validity of the proposed microwave broadband power divider configuration. Simulation and experiment show excellent performance of multi section power divider.

  • PDF

State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter (이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정)

  • Hong-Ryun Jung;Jun Ho Kim;Seung Woo Kim;Jong Hoon Kim;Eun Jin Kang;Jeong Woo Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Along with the high interest in electric vehicles and new renewable energy, there is a growing demand to apply lithium-ion batteries in the construction equipment industry. The capacity of heavy construction equipment that performs various tasks at construction sites is rapidly decreasing. Therefore, it is essential to accurately predict the state of batteries such as SOC (State of Charge) and SOH (State of Health). In this paper, the errors between actual electrochemical measurement data and estimated data were compared using the Dual Extended Kalman Filter (DEKF) algorithm that can estimate SOC and SOH at the same time. The prediction of battery charge state was analyzed by measuring OCV at SOC 5% intervals under 0.2C-rate conditions after the battery cell was fully charged, and the degradation state of the battery was predicted after 50 cycles of aging tests under various C-rate (0.2, 0.3, 0.5, 1.0, 1.5C rate) conditions. It was confirmed that the SOC and SOH estimation errors using DEKF tended to increase as the C-rate increased. It was confirmed that the SOC estimation using DEKF showed less than 6% at 0.2, 0.5, and 1C-rate. In addition, it was confirmed that the SOH estimation results showed good performance within the maximum error of 1.0% and 1.3% at 0.2 and 0.3C-rate, respectively. Also, it was confirmed that the estimation error also increased from 1.5% to 2% as the C-rate increased from 0.5 to 1.5C-rate. However, this result shows that all SOH estimation results using DEKF were excellent within about 2%.