• Title/Summary/Keyword: Equipment wear

Search Result 217, Processing Time 0.023 seconds

Quality Variable Prediction for Dynamic Process Based on Adaptive Principal Component Regression with Selective Integration of Multiple Local Models

  • Tian, Ying;Zhu, Yuting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1193-1215
    • /
    • 2021
  • The measurement of the key product quality index plays an important role in improving the production efficiency and ensuring the safety of the enterprise. Since the actual working conditions and parameters will inevitably change to some extent with time, such as drift of working point, wear of equipment and temperature change, etc., these will lead to the degradation of the quality variable prediction model. To deal with this problem, the selective integrated moving windows based principal component regression (SIMV-PCR) is proposed in this study. In the algorithm of traditional moving window, only the latest local process information is used, and the global process information will not be enough. In order to make full use of the process information contained in the past windows, a set of local models with differences are selected through hypothesis testing theory. The significance levels of both T - test and χ2 - test are used to judge whether there is identity between two local models. Then the models are integrated by Bayesian quality estimation to improve the accuracy of quality variable prediction. The effectiveness of the proposed adaptive soft measurement method is verified by a numerical example and a practical industrial process.

A Review of Rear Axle Steering System Technology for Commercial Vehicles

  • Khan, Haroon Ahmad;Yun, So-Nam;Jeong, Eun-A;Park, Jeong-Woo;Yoo, Chung-Mok;Han, Sung-Min
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.152-159
    • /
    • 2020
  • This study reviews the rear or tag axle steering system's concepts and technology applied to commercial vehicles. Most commercial vehicles are large in size with more than two axles. Maneuvering them around tight corners, narrow roads, and spaces is a difficult job if only the front axle is steerable. Furthermore, wear and tear in tires will increase as turn angle and number of axles are increased. This problem can be solved using rear axle steering technology that is being used in commercial vehicles nowadays. Rear axle steering system technology uses a cylinder mounted on one of rear axles called a steering cylinder. Cylinder control is the primary objective of the real axle steering system. There are two types of such steering mechanisms. One uses master and slave cylinder concept while the other concept is relatively new. It goes by the name of smart axle, self-steered axle, or smart steering axle driven independently from the front wheel steering. All these different types of steering mechanisms are discussed in this study with detailed description, advantages, disadvantages, and safety considerations.

Development of Oil Flushing System with Microbubble Generator (마이크로 버블 발생장치와 결합된 오일 플러싱 장치 개발)

  • Hong, Sung-Ho;Lee, Kyung-Hee;Jeong, Nam-Wha
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.109-114
    • /
    • 2022
  • This paper reports the development of an oil flushing system combined with a microbubble generator. Oil flushing plays a crucial role in regulating the lubricant's performance during the lubricant replacement process. Moreover, harmful contaminants, such as sludge, wear particles, and rust, from piping systems or lubrication system can be removed by oil flushing. Oil flushing aims to increase the system's efficiency using a dedicated flushing oil, increasing of the supply pressure and generating a vortex. In addition, it helps the mechanical system or equipment achieve peak performance and reduces the potential for premature failure. However, the contaminant-removal applications of existing oil flushing system are limited. In this research, we aim to improve the performance of oil flushing system by incorporating a microbubble generator, which uses the venture effect to generate microbubbles and mixes them with lubricant. The microbubbles in the blended lubricant remove contaminants from the lubrication system more effectively. Structural mechanics and fluid dynamics are analyzed through fluid-structure interaction (FSI) analysis, and the numerical analysis results are used for the designing the system. The magnitude of the maximum stress is investigated based on the pressure results obtained by the CFD analysis; through the CFD analysis, the mixing ratio of air (bubble) and lubricant is evaluated using the volume of fluid (VOF) model according to the working conditions.

Effect of Gun Nozzle Movement Speed in HVOF Process on the properties of Coating Thickness and Surface (HVOF 용사 건의 이동속도가 WC-Co 코팅층의 두께 형성 및 표면 특성에 미치는 영향)

  • Kim, Kibeom;Kim, Kapbae;Jung, Jongmin;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.262-269
    • /
    • 2022
  • In order to process materials such as engineering plastics, which are difficult to mold due to their high strength compared to conventional polymer materials, it is necessary to improve the hardness and strength of parts such as screws and barrels of injection equipment in extrusion system. High-velocity oxygen fuel (HVOF) process is well known for its contribution on enhancement of surface properties. Thus in this study, using the HVOF process, WC coating layers of different thicknesses were bonded to the surface of S30C substrate by controlling the movement speed of the spray nozzle and each property was evaluated to decide the optimization condition. Through the results, the thickness of WC coating layer increased from 0 to 200 ㎛ maximum, along with the decrement of nozzle movement speed and the surface hardness get increased. Especially, the coated layer with the thickness over 180 ㎛ under the nozzle speed 500 mm/s had high hardness than thinner layer. In addition, the amount of wear consumed per unit time was also significantly reduced due to the formation of the coating layer.

Determinants of Performance and Design for Improving Safety Helmet Usability (안전모 사용성 향상을 위한 성능 및 디자인 결정 요인에 관한 연구)

  • Sang Woo Shim;Yong Su Sim;Jong Bin Lee;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.85-92
    • /
    • 2023
  • A safety helmet is considered the last gear to protect workers from harmful and dangerous events occurring on industrial sites. Recently, interest in the importance of personal protective equipment design reflecting individual characteristics has been emphasized to improve usability and convenience. However, it has been found that if it is inconvenient to wear or has poor work efficiency, it will not be used well or will be used incorrectly. In this study, an investigation was performed with 35 questions, direct observation, and intensive interviews of construction workers to determine the inconvenience and problems of wearing safety helmets. Moreover, managers of 9 construction sites in 6 cities were asked about the performance and design of safety helmets. As a positive answer, it was found that the brim (awning) of the safety helmet was shortened to give the safety glasses a light-shielding function. In addition, an upward adjustment all-in-one type safety helmet was requested. On the other hand, it was revealed that negative answers felt uncomfortable due to the brim (awning) on the front of the helmet. Based on the survey results, a new helmet model suitable for construction site activities was presented, and wearability improvement determinants were discovered through performance and design improvement.

Development of the Power Assist System for High Efficiency and Lightweight Wearable Robot in Unstructured Battlefield (비정형화된 전장 환경에 활용 가능한 고효율-경량형 외골격 착용 로봇의 근력 보조 시스템 개발)

  • Huichang Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.313-323
    • /
    • 2023
  • The wearable robot system is designed to assist human skeletal and muscular systems for enhancing user's abilities in various fields, including medical, industrial, and military. The military has an expanding need for wearable robots with the integration of surveillance/control systems and advanced equipment in unstructured battlefield environments. However, there is a lack of research on the design and mechanism of wearable robots, especially for power assist systems. This study proposes a lightweight wearable robot system that provides comfortable wear and muscle support effects in various movements for soldiers performing high-strength and endurance missions. The Power assist mechanism is described and verified, and the tasks that require power assist are analyzed. This study explain the system including its driving mechanism, control system, and mechanical design. Finally, the performance of the robot is verified through experiments and evaluations, demonstrating its effectiveness in muscle support.

Scene Generation of CNC Tools Utilizing Instant NGP and Rendering Performance Evaluation (Instant NGP를 활용한 CNC Tool의 장면 생성 및 렌더링 성능 평가)

  • Taeyeong Jung;Youngjun Yoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • CNC tools contribute to the production of high-precision and consistent results. However, employing damaged CNC tools or utilizing compromised numerical control can lead to significant issues, including equipment damage, overheating, and system-wide errors. Typically, the assessment of external damage to CNC tools involves capturing a single viewpoint through a camera to evaluate tool wear. This study aims to enhance existing methods by using only a single manually focused Microscope camera to enable comprehensive external analysis from multiple perspectives. Applying the NeRF (Neural Radiance Fields) algorithm to images captured with a single manual focus microscope camera, we construct a 3D rendering system. Through this system, it is possible to generate scenes of areas that cannot be captured even with a fixed camera setup, thereby assisting in the analysis of exterior features. However, the NeRF model requires considerable training time, ranging from several hours to over two days. To overcome these limitations of NeRF, various subsequent models have been developed. Therefore, this study aims to compare and apply the performance of Instant NGP, Mip-NeRF, and DS-NeRF, which have garnered attention following NeRF.

A Study on Selecting Personal Protective Equipment for Listed Hazardous Chemicals (2): Analysis Using an Exposure Risk Matrix (사고대비물질 개인보호구 선정에 관한 연구(2): 노출위해성 매트릭스에 의한 분석)

  • Han, Don-Hee;Chung, Sang-Tae;Kim, Jong-Il;Cho, Yong-Sung;Lee, Chung-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.430-437
    • /
    • 2016
  • Objectives: The new Chemical Control Act from the Korean Ministry of Environment (2014-259) simply states only in basic phrases that every worker handling the listed chemicals should wear personal protective equipment (PPE) and does not consider the different hazard characteristics of particular chemicals or work types. The purpose of this study was to produce an exposure risk matrix and assign PPE to the categories of this matrix, which would be useful for revising the act to suggest PPE to suit work types or situations. Methods: An exposure risk matrix was made using hazard ranks of chemicals and workplace exposure risks in the previous study. For the 20 categories of exposure risk matrix PPE, levels A, B, C, D as classified by OSHA/EPA were assigned. After 69 hazardous chemicals were divided into 11 groups according to their physiochemical characteristics, respirators, chemical protective clothing (CPC), gloves and footwear were suggested on the basis of the assigned PPE levels. Results: PPE table sheets for the 11 groups were made on the basis of work types or situations. Full facepiece or half-mask for level C was recommended in accordance with the exposure risk matrix. Level A was, in particular, recommended for loading or unloading work. Level A PPE should be worn in an emergency involving hydrogen fluoride because of the number of recent related accidents in Korea. Conclusion: PPE assignment according to the exposure risk matrix made by chemical hazards and work type or situation was suggested for the first time. Each type of PPE was recommended for the grouped chemicals. The research will be usefully used for the revision of the Chemical Control Act in Korea.

Fatigue analysis for structural stability review of TBM cutterhead (TBM 커터헤드의 구조안정성 검토를 위한 피로해석)

  • Choi, Soon-Wook;Kang, Tae-Ho;Lee, Chulho;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.529-541
    • /
    • 2020
  • Although TBM's cutterhead requires design review for fatigue failure due to wear-induced section loss as well as heavy load during excavation, it is difficult to find a case of fatigue analysis for TBM cutterhead at present. In this study, a stress-life design review was conducted on cutter heads with a diameter of 8.2 m using S-N curves as a safety life design concept. Also, we introduced the fatigue design method of construction equipment and the method of assessing fatigue damage and explained the results of the fatigue analysis on the TBM cutter head with a diameter of 8.2 m. The S-N curve has been shown to play a key role in fatigue design and can also be used to assess how much fatigue damage a structure is suffering from at this point in time. In the future, it is necessary to find out when fatigue problems occur during using the equipment and when it is good to conduct safety inspections of the equipment.

A Study on the Improvement and the Survey Study on the Complaints of People with Disabilities in the Use of Disabled Car (복지차 이용 시 장애인의 불편사항 조사와 개선방안 연구)

  • Rhee, Kum Min;Kim, Dong Ok
    • 재활복지
    • /
    • v.17 no.4
    • /
    • pp.339-370
    • /
    • 2013
  • This study is to suggest necessary improvements of inconvenient elements as well as the ergonomic design standard to develop disabled cars by evaluating the types of needs and observing the behavior characteristics on their car use and the survey on the complaints of the disabled drivers and their guardians in the use of disabled car. The results of this study are as follows. First, both the disabled drivers and their guardians are found to feel high inconvenience and low satisfaction with the cars they use now. Second, the disabled owner-drivers also answered in a same way as guardians. They find the most difficulty in moving the supporting equipment to get into and out of a car. Both the owner-drivers with disabilities and guardians complained of lack of handiness they face when they wear the seat belts and sitting on the seats. In view of this, a disabled car to be developed should have ergonomic design for its seats and the safety of the seatbelt as well as trouble-free supporting equipment helping them move. Third, rather than owner-drivers with handicaps, guardians expressed more difficulties and less contentment with the cars for the disabled, which is reckoned to lead to the changes of perspectives on development of cars for the disabled breaking away from existing viewpoints focusing on the accessibility to the vehicles. Fourth, both owner-drivers and guardians showed higher interests in driving and other safety and convenience measures than in using supporting equipment to get into and out of vehicles, implying that rather than the accessibility to get into and out of a car, convenience should primarily be taken into account for the design of the disabled car. Fifth, the auto-manufacturer is to give prior thought to user convenience when developing a car in practice. For this, the developer may have the disabled car users join the process of development as well as asking experts for help and participation.