• Title/Summary/Keyword: Equipment noise

Search Result 989, Processing Time 0.033 seconds

Fan Noise Prediction Method of Air Cooling System (공기 냉각 시스템의 홴 소음 예측 기법)

  • Lee, Chan;Kil, Hyun-Gwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.952-960
    • /
    • 2008
  • Fan noise prediction method is presented for air conditioning, automobile and electronic cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(flow network modeling). Fan noise prediction method comprises two models for the discrete frequency noise due to rotating steady aerodynamic lift and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. Based on the fan operation point predicted from the FNM analysis results and fan design parameters, the present far noise model predicts overall sound pressure level and spectrum. The predictions for the flow distribution, the fan operation and the noise level in air cooling system by the present method are well agreed with 3-D CFD and actual noise test results.

A Study on the Evaluation Factors for Diffuser Noise of HVAC (공기조화 취출구 소음의 평가요인에 관한 연구)

  • Park, Hyeon-Ku;Kim, Hang;Kim, Sun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.149-155
    • /
    • 2006
  • There are various types of noise around us such as road traffic noise, aircraft noise and floor impact sound, equipment noise, etc. Researches on the noise criteria and the evaluation method for the diffuser noise of HVAC are insufficient. dB(A) and NC values represented in ASHRAE guide book are applied as a noise criteria for diffuser noise, which have some problems like that the values between dB(A) and NC have deviation even if the sound is same one. Therefore, the evaluation method should be considered and proposed based on the subjective responses. From these reasons, this study aimed to analyze the evaluation factors for the diffuser noise of HVAC reflected on the subjective responses by surveying vocabularies and grouping them with factor analysis.

A Study on the Evaluation Factors for Diffuser Noise of HVAC (공기조화 취출구 소음의 평가요인 설정에 관한 연구)

  • Park, Hyeon-Ku;Kim, Hang;Kim, Won-Sik;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.349-354
    • /
    • 2005
  • There are various types of noise around us such as road traffic noise, aircraft noise and floor impact sound, equipment noise etc. Recently researches on the criteria to evaluate the noises have been progressed, however, researches on the noise criteria and evaluation method for the diffuser noise of HVAC are insufficient. dB(A) and NC values represented in ASHRAE guide book are applied as a noise criteria for diffuser noise, which have some problems like that the values between dB(A) and NC have deviation even if the sound is same one. Therefore, the evaluation method should be considered and proposed based on the subjective responses. From these reasons, this study aimed to analyze the evaluation factors for the diffuser noise of HVAC reflected on the subjective responses by surveying vocabularies and grouping them with factor analysis.

  • PDF

Development of Management System for Measurement and Characteristic Analysis, Evaluation of Environmental Noise (인터넷 통신을 이용한 환경소음 측정 분석 및 평가 관리 시스템의 개발)

  • Yu, Dong-Jun;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.306-312
    • /
    • 2005
  • In these days, the people living in the urban suffer from the environmental noise because the number of cars increases in the city, and a lot of new industrial complex is made in the urban every year. But there is no suitable system for measurement and management of environmental noise. Therefore, in this research, a new system for the measurement and characteristic analysis, evaluation, management of environmental noise using Internet communication is developed. The system includes the environmental noise measurement equipment and the controller for the noise measurement and analysis, evaluation, management.

Experimental Evaluation Method for Investigating BSR Noise of Vehicle Seats (차량용 시트의 BSR Noise 규명을 위한 시험적 평가방법)

  • Kim, Byung-Jin;Moon, Nam-Su;Park, Jin-Sung;Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.425-426
    • /
    • 2010
  • Recently, Most of diverse noise of vehicles has decreased competitively according to development of the automotive manufacturing technology. Especially, Passenger car manufacturers has been conducting buzz, squeak and rattle(BSR) noise test as a method of the noise evaluation tests to reduce an unpleasant sound from interior parts on the driving the car. This paper suggest a evaluation method for detecting position of noise source from measured noise signals of vehicle seats during random excitation BSR test. Hereby the BSR test procedure used the test regulation of 'G' company. The detection of noise source positions used the Sound image equipment. Through suggested the test method on this paper, an accurate analysis of noise source occurred in the BSR test will be possible.

  • PDF

A Study on the noise & vibration properities of Fan Filter Unit and evaluation of effect to Clean Room (Fan Filter Unit 소음ㆍ진동 특성과 청정실에 미치는 영향성 평가에 관한 연구)

  • 백재호;손성완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.778-784
    • /
    • 2002
  • FFU are used increasingly by the microeleceronics industry to provide clean recirculating air for the fabrication of integrated circuits and laminar flow air. There may be several hundred ffu in a large cleanroom, covering 100% of the ceiling area. Hence, there is of often knowledge in the inside and outside of the country the flu give rise to noise & vibration trouble to microelectronics industry. Noise & Vibration control for satisfication about noise & vibration criteria in TFT-LCD factory cleanroom be in need of exact noise & vibration data of accurence from utility & equipment that can be exert a bad influence upon cleanroom. In this pater, hence we found out noise and vibration properities of ffu by using experimental method. And, we performed noise & vibration analysis about noise it vibration level in cleanroom using semiempirical method for quantative approach about noise & vibration level in cleanroom.

  • PDF

Development of Management System for Measurement and Characteristic analysis, Evaluation of Environmental Noise (인터넷 통신을 이용한 환경소음 측정 분석 및 평가 관리 시스템의 개발)

  • Yu, Dong-Jun;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.160-165
    • /
    • 2004
  • In these days, the people living in the urban is suffer from the environmental noise because the number of car increase in the city, and a lot of new industrial complex is made in the urban every. But there is no suitable system for measurement and management of environmental noise. Therefore, in this research, a new system for the measurement, characteristic analysis and evaluation, management of environmental noise using Internet communication is developed. The system includes the environmental noise measurement equipment and the controller for the noise measurement, analysis and evaluation, management.

  • PDF

The Voice Quality Improvement by Bone Conduction Feedback Compensation in Mobile Phone (골전도 피드백 보상에 의한 휴대전화 음질 향상)

  • Park, Hyung-Woo;Lim, Won-Seok;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.359-366
    • /
    • 2012
  • Today, people are exposed to the various noisy environments, such as in the buses, subway and supermarkets where there are a lot of people. The noise issue is getting more serious as people want to use portable sound equipment and mobile phones even under this noisy condition. People want to use the portable equipment to exchange the information freely and they set the volume as 15dB higher than the noise around them, which almost reach at 110 dB. That amount of sound can cause noise induced deafness to the users and another issue to the others as additional noise source. A Bone-conduction system can be a solution to reduce noise and enhance voice signal of mobile phone. In this paper, we propose the way of cancelling noise and enhancing speech signal of mobile phones, by installing bone-conduction feedback system with ordinary mobile phones. With this system, we can reduce the environment noise and enhance the voice quality of mobile phones. Using this method, we can enhance the signal by around 17 dB.

A Study on a Hearing Test to Measure Progress of Noise Induced Hearing Loss (소음성 난청 진전도 측정을 위한 청력측정법에 관한 연구)

  • Kwon, Hyung-Jun;Lee, Sung-Tae;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.184-190
    • /
    • 2010
  • Lowering of auditory caused by noise is increased, these days. Especially, people who have noise induced hearing loss by permanent exposure to noise are increased according to spread out of multimedia and improvement of information equipment. The pure tone audiometry used in the hospital presently inspect auditory manually up to 8,000 Hz bandwidth. So the case of noise induced hearing loss which suffered from extended high frequency over 8,000 Hz, there is a problem to prevent hearing loss by precognition. In this paper, we proposed a method to prevent noise induced hearing loss by using extended high frequency bandwidth from 12,000 Hz to 20,000 Hz. We have got a experimental result to fifty of twenties who are often used to earphones through portable equipment. As a result, 36% of twenties show lowering of auditory caused by noise and 2% of them shows severe loss of hearing.

Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments (발사환경에 대한 인공위성 전장품의 구조진동 해석)

  • 박태원;정일호;한상원;김성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.768-771
    • /
    • 2003
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, electronic equipment (KOMPSAT 2, RDU : Remote Drive Unit) of a satellite consists of aluminum case containing PCB (Printed circuit boards). Each PCB has resistors and IC (Integrated circuits). Noise and vibration of wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation. random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when tile frequency of random vibration meets with natural frequency of PCB. fatigue fracture nay occur in the part of solder joint. The launching environment, thus. needs to be carefully considered when designing the electronic equipment of a satellite. In general. the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM(Finite Element Method) or vibration test. In this study. the natural frequency and dynamic deflection of PCB are measured by FEM, aud the safety of the electronic components of PCB is being evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs from the electronic equipments of a satellite to home electronics.

  • PDF