• Title/Summary/Keyword: Equipment Number

Search Result 1,539, Processing Time 0.025 seconds

MEASUREMENT OF OPERATIONAL ACTIVITY FOR NONROAD DIESEL CONSTRUCTION EQUIPMENT

  • HUAI T.;SHAH S. D.;DURBIN T. D.;NORBECK J. M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.333-340
    • /
    • 2005
  • In order to better quantify the contribution from nonroad sources to emission inventories, it is important to understand not only the emissions rates of these engines but also activity patterns that can be used to accurately portray their in-use operation. To date, however, very little information is available on the actual activity patterns of nonroad equipment. In this study, a total of 18 pieces of nonroad equipment were instrumented with collected data including intake manifold air pressure (MAP), exhaust temperature and, on a subset of vehicles, engine rpm and throttle position. The equipment included backhoes, compactors, dozers, motor graders, loaders and scrappers used in applications such as landfilling, street maintenance and general roadwork. The activity patterns varied considerably depending on the type of equipment and the application. Daily equipment operating time ranged from less than 30 minutes to more than 8 hours, with landfill equipment having the highest daily use. The number of engine starts per day ranged from 3-11 lover the fleet with an average of 5 starts per day. The average percent idle time for the fleet was approximately $25\%$ with a range from 11 to $65\%$ for individual pieces of equipment. Duty cycles based on exhaust temperature/throttle position profiles were also developed for two graders and one dozer.

Evaluation of the Forest Bird Community by using a Sound Recording System -Verification for the Avifauna evaluation in the non-breeding season -

  • Yoo, Seung-Hwa;Han, Hyun-Jin;Kim, Dong-Won;Joo, Woo-Young
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.2
    • /
    • pp.174-183
    • /
    • 2015
  • We have conducted a verification test of correlation between bird community indices and bird sound recording results in order to use the equipment which deals with the automatic sound collecting system, the song meter. The study areas include four sites which are Gombaeryoung and Zochimryoung in Jeombongsan Mountain and Jookryoung and Gochiryoung in Sobaeksan National Park. We collected the bird sound data five times using a sound recorder and field survey results in the same place of the study site. As a result of the sound recording from the field survey, the species recorded by three researchers of sound analyst include common resident species or species which have a relatively conspicuous call and song. On the contrary, the species recorded by only one researcher are a relatively rare or inconspicuous species or was familiar with the personal experiences of each researcher. The number of species recorded by only one researcher totaled fourteen species (36.8 %), and that of two researchers totaled twelve species (31.6 %), and that of three researchers totaled twelve species (31.6 %). The correlations of the number of species among three researchers was not significant in some results, but the sum or maximum count of the number of species was useful to estimate a significant correlation between the result of researchers and the indices of field surveys. As a result of correlation analysis by using sound recordings, the maximum number of species among the three researchers significantly correlated with the number of species, the species diversity index and the species abundance index in the field survey at the same site, however it did not correlate with the number of individuals and species evenness index. As a result of sound analysis collected from the stationary sound recording system; song meter, the number of frequencies in bird songs and calls correlated with the number of species in the field survey at the same site. The number of calls and songs decreased as time went by. Finally, we could test the active time range and change the activity strength by using a sound recording system. In particular, that sound recording system is able to collect data in same time and site, so it is expected so that the equipment not only replenish a shortage of researchers and survey periods in field research in a short term monitoring survey, but also be able to acquire statistical objectivity.

Analysis of Patent Trends in Industrial Information and Communication Technology Convergence: Personal Protection and Convenience Equipment Applicable to Agriculture (농업분야에 적용이 가능한 산업용 ICT 융합 개인보호 및 편이장비 특허동향 분석)

  • Kim, Insoo;Kim, Kyungsu;Chae, Hye-Seon;Kim, Hyo-Cher;Kim, Kyung-Ran
    • The Korean Journal of Community Living Science
    • /
    • v.28 no.3
    • /
    • pp.377-390
    • /
    • 2017
  • This study identified technological trends through an analysis of patents for the industrialization of personal protection and convenience equipment using information and communication technology (ICT) as a part of efforts to prevent farm work-related disasters. The analysis was conducted on patents registered and published between January 1974 and May 2016 by the world's five largest intellectual property offices, including the KIPO, USPTO, JPO, EPO, and SIPO. The results of the analysis indicate that the US (36.8%) and South Korea (30.9%) led technological research and development (R&D) with frequent patent applications. An analysis of the technological market revealed that these countries are in the growth and maturity stages, in which the number of patents and number of patent applicants grow rapidly. In terms of the technological market shares of major countries, the US recorded the highest market shares in the field of sensing systems for workers' dangerous conditions and convenience protection equipment based on the internet of things (IoT) convergence. South Korea marked the highest share of 41.8% in the field of sensing devices for dangerous conditions in the working environment. An analysis of the trend of patent applications by specific technologies disclosed the following results: sensing systems for workers' dangerous conditions accounted for the highest share (49.2%), followed by IoT convergence-based convenience protection equipment (26.3%) and sensing devices for dangerous conditions in the working environment (24.6%). Based on this study, ICT-based personal protection and convenience equipment technologies are expected to be actively developed in the future. It will be necessary to secure national competitiveness through R&D investments and commercialization in personal protection and convenience equipment appropriate for farm work as well as through the acquisition of patent technologies and intellectual property rights.

Study on Wireless Internet Industry Trends (무선인터넷 산업의 동향)

  • 김강회;여운동;홍성화
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.597-600
    • /
    • 2003
  • Wireless Internet access shows an early-stage market that is entering a period of strong and sustained growth., reaching almost $40 billion in combined related equipment services by 2008 with equipment and services of nearly equal proportion. This explosive development is possible due to the continued growth of two of the most successful markets in history, the internet and mobile telephony. The number of global wireless internet users will incense from approximately 1.9million in 2001 to 1.3billion by 2006. Technological changes are the main factor in the emergence of what is being called the fourth generation of mobile communications.

  • PDF

Performance Evaluation of Spectral Analysis System for TDX-families Signaling Service Equipment

  • Yoon, Dal-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.10A
    • /
    • pp.1764-1771
    • /
    • 2001
  • It has developed a PCM signal acquisition(PCMA) system which can analyze status of signals in order to establish rapid diagnosing in TDX-families signaling service equipment. We develop the quick Fourier transform(QFT) for length 2$\^$M/ data to analyze the power spectral of the PCMA system. This algorithm can reduces the number of floating-point operations necessary to compute the DFT by a factor of two or four over direct methods or Goertzels method for prime lengths. In the experimental results, the system classifies the type of signals and finally discriminates the digit.

  • PDF

Submodule Level Distributed Maximum Power Point Tracking PV Optimizer with an Integrated Architecture

  • Wang, Feng;Zhu, Tianhua;Zhuo, Fang;Yi, Hao;Shi, Shuhuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1308-1316
    • /
    • 2017
  • The distributed maximum power point tracking (DMPPT) concept is widely adopted in photovoltaic systems to avoid mismatch loss. However, the high cost and complexity of DMPPT hinder its further promotion in practice. Based on the concept of DMPPT, this paper presents an integrated submodule level half-bridge stack structure along with an optimal current point tracking (OCPT) control algorithm. In this full power processing integrated solution, the number of power switches and passive components is greatly reduced. On the other hand, only one current sensor and its related AD unit are needed to perform the ideal maximum power generation for all of the PV submodules in any irradiance case. The proposal can totally eliminate different small-scaled mismatch effects in real-word condition and the true maximum power point of each PV submodule can be achieved. As a result, the ideal maximum power output of the whole PV system can be achieved. Compared with current solutions, the proposal further develops the integration level of submodule DMPPT solutions with a lower cost and a smaller size. Moreover, the individual MPPT tracking for all of the submodules are guaranteed.

Generation of Floor Response Spectra Considering Coupling Effect of Primary and Secondary System (부구조시스템의 연계 효과를 고려한 구조물의 층응답 스펙트럼 생성)

  • Cho, Sung Gook;Gupta, Abhinav
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.179-187
    • /
    • 2020
  • Seismic qualification of equipment including piping is performed by using floor response spectra (FRS) or in-structure response spectra (ISRS) as the earthquake input at the base of the equipment. The amplitude of the FRS may be noticeably reduced when obtained from coupling analysis because of interaction between the primary structure and the equipment. This paper introduces a method using a modal synthesis approach to generate the FRS in a coupled primary-secondary system that can avoid numerical instabilities or inaccuracies. The FRS were generated by considering the dynamic interaction that can occur at the interface between the supporting structure and the equipment. This study performed a numerical example analysis using a typical nuclear structure to investigate the coupling effect when generating the FRS. The study results show that the coupling analysis dominantly reduces the FRS and yields rational results. The modal synthesis approach is very practical to implement because it requires information on only a small number of dynamic characteristics of the primary and the secondary systems such as frequencies, modal participation factors, and mode shape ordinates at the locations where the FRS needs to be generated.

Anomaly Diagnosis of Rotational Machinery Using Time-Series Vibration Data Based on Time-Distributed CNN-LSTM (시분할 CNN-LSTM 기반의 시계열 진동 데이터를 이용한 회전체 기계 설비의 이상 진단)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1547-1556
    • /
    • 2022
  • As mechanical facilities are interacting with each other, the failure of some equipment can affect the entire system, so it is necessary to quickly detect and diagnose the abnormality of mechanical equipment. This study proposes a deep learning model that can effectively diagnose abnormalities in rotating machinery and equipment. CNN is widely used for feature extraction and LSTMs are known to be effective in learning sequential information. In LSTM, the number of parameters and learning time increase as the length of input data increases. In this study, we propose a method of segmenting an input segment signal into shorter-length sub-segment signals, sequentially inputting them to CNN through a time-distributed method for extracting features, and inputting them into LSTM. A failure diagnosis test was performed using the vibration data collected from the motor for ventilation equipment installed at the urban railway station. The experiment showed an accuracy of 99.784% in fault diagnosis. It shows that the proposed method is effective in the fault diagnosis of rotating machinery and equipment.

Studies on ASP Ammo Issue using Simulation (시뮬레이션을 이용한 ASP 탄약 불출에 관한 연구)

  • 김장현;이해관;박헌근;박춘식;곽종선
    • Journal of the military operations research society of Korea
    • /
    • v.30 no.1
    • /
    • pp.92-106
    • /
    • 2004
  • This is a case study which establishes effective ammo issue plan and determines ammo support capability by linking various situations about ammo issue with wargame simulation. Ammo function simulation model has been developed for this matter and it has been proven that the model has significant impact on type of round, parking space for magazine, number of workers and capacity of equipment, etc. during establishing ammo issue plan and determining ammo supply capability. Also, ammo support capability varies significantly depending on tactical damage and MOPP status, etc. ASP's tactical situation, such as magazine damage, MOPP status, type of issuing round, parking space for magazine, number of workers and capacity of equipment, can be reflected when preparing an effective wartime ammo working hour issuing plan for supplying ammo to units through studies results, so that the issuing plan can be realistic and actual.

NAC Measurement Technique on High Parallelism Probe Card with Protection Resistors

  • Kim, Gyu-Yeol;Nah, Wansoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.641-649
    • /
    • 2016
  • In this paper, a novel time-domain measurement technique on a high parallelism probe card with protection resistors installed is proposed. The measured signal amplitude decreases when the measurement is performed by Needle Auto Calibration (NAC) probing on a high parallelism probe card with installed resistors. Therefore, the original signals must be carefully reconstructed, and the compensation coefficient, which is related to the number of channel branches and the value of protection resistors, must be introduced. The accuracy of the reconstructed signals is analyzed based on the varying number of channel branches and various protection resistances. The results demonstrate that the proposed technique is appropriate for evaluating the overall signal performance of probe cards with Automatic Test Equipment (ATE), which enhances the efficiency of probe card performance test dramatically.