• 제목/요약/키워드: Equine herpes virus

검색결과 4건 처리시간 0.016초

Evaluation of concurrent vaccinations with recombinant canarypox equine influenza virus and inactivated equine herpesvirus vaccines

  • Dong-Ha, Lee;Eun-bee, Lee;Jong-pil, Seo;Eun-Ju, Ko
    • Journal of Animal Science and Technology
    • /
    • 제64권3호
    • /
    • pp.588-598
    • /
    • 2022
  • Despite vaccination, equine influenza virus (EIV) and equine herpesvirus (EHV) infections still cause highly contagious respiratory diseases in horses. Recently, concurrent vaccination with EIV and EHV was suggested as a new approach; however, there have been no reports of concurrent vaccination with recombinant canarypox EIV and inactivated EHV vaccines. In this study, we aimed to compare the EIV-specific immune responses induced by concurrent administrations of a recombinant canarypox EIV vaccine and an inactivated bivalent EHV vaccine with those induced by a single recombinant canarypox EIV vaccine in experimental horse and mouse models. Serum and peripheral blood mononuclear cells (PBMCs) were collected from immunized animals after vaccination. EIV-specific serum antibody levels, serum hemagglutinin inhibition (HI) titers, and interferon-gamma (IFN-γ) levels were measured by enzyme-linked immunosorbent assay, HI assay, and quantitative polymerase chain reaction, respectively. Concurrent EIV and EHV vaccine administration significantly increased IFN-γ production, without compromising humoral responses. Our data demonstrate that concurrent vaccination with EIV and EHV vaccines can enhance EIV-specific cellular responses in horses.

Coinfected cases with equine herpesvirus type 1, 4 and Streptococcus equi subsp. zooepidemicus in throughbred horse

  • Kim, Seong-Guk;Cho, Gil-Jae;Cho, Min-Hee;Kim, Young-Hoan;Lee, Hong-Young;Choi, Jeong-Hye;Kim, Jeong-Hwa;Choi, Seong-Kyoon
    • 한국동물위생학회지
    • /
    • 제34권2호
    • /
    • pp.187-190
    • /
    • 2011
  • The Thoroughbred horse was an approximately 4-years-old castrated male with highly emaciation, nasal epistaxis and subsequently died. Gross necropsy revealed epistaxis and hyperemia on the lung, multiple hemorrhage in muscle, and liver was focally attached to the peritoneum with fibrin. According to polymerase chain reaction (PCR), Equine herpes virus type 1 and 4 (EHV type 1, 4) was detected in the lung and trachea. In bacterial culture from kidney, liver, spleen, muscle and blood, Streptococcus equi subsp. zooepidemicus was isolated. Based on the gross lesion and PCR, this horse was diagnosed as EHV type 1, 4 and S. zooepidemicus coinfection.

Protective Immune Reponses Induced by Non-infectious L-particles of Equine Herpesvirus Type-1: Implication of Cellular Immunity

  • Mohd Lila Mohd Azmi;Field, Hugh-John;Frazer Rixon;Lauchlan, John-Mc
    • Journal of Microbiology
    • /
    • 제40권1호
    • /
    • pp.11-19
    • /
    • 2002
  • Mice immunized with equine herpesvirus type-1(EHV-1) L-particles skewed a significant increase (p<7.75) in serum antibody titers. Upon a booster dose four weeks lateral antibody titers increased significantly. Interestingly, immunization via intravenous or intramuscular route induced significantly higher (p<0.75) antibody titers. However, mice iummunized with UV-treated L-particles, visions or immunization via intranasal route induced lower antibody titers. Upon challenge inoculation with wildtype EHV-1, our data showed there was a poor correlation between antibody titers and protection against virus replication. Therefore, the role of cell-mediated immunity Inwards protection was investigated. As predicted, the strongest cell-mediated immunity, as measured by delayed-hypersensitivity test, was detected in mice immunized with live virus particles. The magnitude of cell-mediated immune response correlated with the efficacy of L-particles as immunizing agent. The highest efficacy, as indicated in mice immunized via intranasal routed was highly correlated with cell-mediated immunity. A similar phenomenon was also demonstrated in mice immunized intranasally with UV-treated L-particles. However, the degree of protection was reduced when mice immunized intravenously or intramuscularly with UV-treated L-particles. In conclusion, protection conferred in these animals was highly implicated by immune cells and the least by antibodies. The route of immunization and the nature of the antigen also contributed to the efficacy of L-particles as immunizing agent. In contrast to that of herpes simplex virus type 1, our data showed EHV-1 non-infectious L-particles are highly suitable for immunization of the host against EHV-1 disease.

Characterization of the molecular and biological properties between the equine herpesvirus type 1 immediate-early protein and the general transcription factor human TFIIB

  • Jang Hyung-Kwan
    • 한국동물위생학회지
    • /
    • 제27권4호
    • /
    • pp.355-369
    • /
    • 2004
  • The equine herpesvirus type 1 (EHV-1) immediate-early (IE) protein is a potent transactivator responsible for the activation of both early and late genes during the course of infection and is comprised of discrete functional domains that mediate its many functions. Interaction between trans activators such as the IE protein and various components of the RNA polymerase II transcription initiation machinery has been demonstrated to be critical for transactivation. In the present report, it is addressed the hypothesis that the IE protein interacts with various components of transcription machinery to mediate transactivation of target viral genes. In these studies, it is demonstrated that in vitro transcribed and translated IE protein interacts with TFIIB-agarose conjugate but not with TFIID-agarose conjugate. Additional immunoprecipitation studies using nuclear extracts derived from EHV-1 infected RK-13 cells confirmed that the IE protein interacts strongly with TFIIB, but fails to interact with TFIID. IR2, a truncated form of the IE protein lacking the potent transactivation domain and involved in the down-regulation of the IE gene, also interacted with TFIIB but not with TFIID. Studies were also performed to ascertain if particular TBP-associated factors (TAFs) could mediate IE or IR2 binding to TFIID. In vitro transcribed and translated TAF250 added to nuclear extracts generated from EHV-1 infected cells also failed to mediate an interaction between the IE protein or the IR2 protein and TFIID. This study demonstrated that the IE protein mediates transactivation of target viral genes by a mechanism that involves TFIIB. This is in contrast to mechanisms that have been proposed for both the herpes simplex virus ICP4 and VP16 protein which have been proposed to transactivate viral genes through interactions involving both TFIIB and TFIID. This study also intimates that IR2 mediate its repressive effects during the course of EHV-1 infection by a mechanism that involves sequestration of various transcription factors.