• Title/Summary/Keyword: Equilibrium temperature

Search Result 1,194, Processing Time 0.032 seconds

Effect of Additive, Storage Temperature and Time on the Texture Properties of Baikseolgi (첨가물, 저장온도 및 저장시간에 따른 백설기의 텍스쳐 특성)

  • Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.437-441
    • /
    • 1998
  • The effects of sucrose fatty acid ester (SE, 1% w/w) and glycerin (GL, 1% v/w) additions, storage temperature$(0,\;20\;and\;70^{\circ}C)$, and time $(0{\sim}6\;day)$ on texture properties, hardness(H), cohesiveness(O), chewiness(C) and rheological property(R) of Baikseolgi were studied. The H of Baikseolgi increased sharply in the early stage of storage at 0 and $20^{\circ}C$, while increased gently at $70^{\circ}C$ with increasing storage time. After 6 days of storage, the H of Baikseolgi at $20^{\circ}C$ had a little lower than that at $0^{\circ}C$. However, the H of Baikseolgi at $70^{\circ}C$ was 10.7% of that at $0^{\circ}C$. The addition of GL had greater effect on the reduction of H than that of SE. The H of control, SE and GL additions were 336, 216 and $$174\;g_f, respectively, after 6 days at $70^{\circ}C$. The O of Baikseolgi at $70^{\circ}C$ were higher than those at $0^{\circ}C$. The O of GL added Baikseolgi had the highest value and the second and the third were SE added and control, respectively. The O of Baikseolgi decreased with increasing storage time. The C of Baikseolgi of increased with increasing storage time, which had similar curve patterns to the H of Baikseolgi. Instantaneous stress and equilibrium stress of Baikseolgi decreased with increasing storage temperature. The affection of viscous element increased and that of elastic element decreased with increasing storage temperature.

  • PDF

Study on Material Characteristics and Firing Temperature of Jar Coffins from Oryang-dong Kiln Site and Jeongchon Tomb, Naju, Korea (나주 오량동 유적 및 정촌 고분 출토 옹관의 재료적 특성 및 소성온도 연구)

  • Kim, Su Kyoung;Jin, Hong Ju;Jang, Sungyoon
    • Journal of Conservation Science
    • /
    • v.34 no.3
    • /
    • pp.179-193
    • /
    • 2018
  • This study is aimed to investigate the provenance of raw materials and firing temperature of jar coffins excavated from the Oryang-dong kiln site and Jeonchon tomb site, Naju, Korea. Most of jar coffin samples shows same range of magnetic susceptibility and have gray color, while 404 and 405 of Jeongchon site are reddish yellow. In some samples fired at high temperature, the water absorption at the mouth rim and body part of same jar coffin were 3.50% and 7.56% respectively. It means that heat transfer and equilibrium in the kiln was not properly continued and the heat energy transferred to the mouth rim and the body part was different. In the petrographic analysis, As a tempering materials, biotite, weathered quartz and feldspar were added in the jar coffins of Oryang-dong site, and biotite, polycrystalline quartz and feldspar in it of Jeongchon site. Tempering materials were found more in the body than in the mouth rim of same jar coffin of Oryang-dong site. It seemed that some samples were fired at over 1,000 to $1,100^{\circ}C$, which showed vitrified texture in the scanning electron images and the rest of samples were fired at below $900^{\circ}C$. Due to similarity of chemical compositions, it is estimated that jar coffins of Jeongchon tomb were produced and supplied from Oryang-dong kiln site. However, the slight difference of some trace elements distribution of samples is attributed to the selection of clay depending on the location.

A CFD Modeling of Heat Generation and Charge-Discharge Behavior of a Li-ion Secondary Battery (Li-ion 이차전지의 충방전 시 발열 및 충방전 특성의 CFD 모델링)

  • Kang, Hyeji;Park, Hongbeom;Han, Kyoungho;Yoon, Do Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.114-121
    • /
    • 2016
  • This study investigates a CFD modeling of the charge-discharge behavior due to heat generation during charge-discharge cycles of a Li-ion secondary battery(LIB). Present LIB system adopted a current-density equation, heat and mass transfer governing equations upon the 1-dimensional system to the thickness direction for the rectangular pouch configuration. According to the 3-kinds of the charge-discharge current densities of 1C($17.5A/m^2$), 3C($52.5A/m^2$) and 5C($87.5A/m^2$) subject to a 3 V of cut-off voltage, a constant-temperature system at 298 K and three different heat generating systems were analyzed with comparison. Battery capacity decreases with increment of charge-discharge densities not only at the constant-temperature system but also at the heat-generating system. The time for charge-discharge cycles increases at the heat-generating system compare to the constant-temperature system. These trends are considered that the increase of temperature due to heat generation causes the decrement of equilibrium potential of electrodes and the increment of diffusivity of Li ions. Furthermore, cooling effects were discussed in order to control the influence of heat generation due to charge-discharge behavior of a Li-ion secondary battery.

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

Phase Behavior of Simvastatin Drug in Mixtures of Dichloromethane and Supercritical Carbon Dioxide and Microparticle Formation of Simvastatin Drug Usins Supercritical Anti-Solvent Process (디클로로메탄과 초임계 이산화탄소의 혼합용매에서 Simvastatin 약물의 상거동과 초임계 역용매 공정을 이용한 Simvastatin 약물 미세입자의 제조)

  • Oh, Dong-Joon;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.34-45
    • /
    • 2007
  • Phase behavior of the ternary systems of water-insoluble simvastatin drug, which is well known to be effective drugs for hypercholesterolemia therapy, in solvent mixtures of dichloromethane and supercritical carbon dioxide was investigated to present a guideline of establishing operating conditions in the particle formation of the drugs by a supercritical anti-solvent recrystallization process utilizing dichloromethane as a solvent and carbon dioxide as an anti-solvent. The solubilities of simvastatin in the mixtures of dichloromethane and carbon dioxide were determined as functions of temperature, pressure and solvent composition by measuring the cloud points of the ternary mixtures at various conditions using a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The solubility of the drug increased as the dichloromethane composition in solution and the system pressure increases at a fixed temperature. A lower solubility of the drug was obtained at a higher temperature. The second half of this work is focused on the particle formation of the simvastatin drug by a supercritical anti-solvent recrystallization process in a cylindrical high-pressure vessel equipped with an impeller. Microparticles of the simvastatin drug were prepared as functions of pressure (8 MPa to 12 MPa), temperature (303.15 K, 313,15 K), feed flow rate of carbon dioxide, and stirring speed (up to 3000 rpm), in order to observe the effect of those process parameters on the size and shape of the drug microparticles recrystallized.

  • PDF

Effect of Aging Time on the Sonic Conductivity of $PEO_8LiClO_4/Al_2O_3$ Composite Polymer Electrolytes ($PEO_8LiClO_4/Al_2O_3$ 복합 고분자 전해질에서의 이온 전도도의 노화 현상)

  • Choi, Byoung-Koo;Park, Young-Hwan
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.263-268
    • /
    • 2007
  • Most of current works on the PEO-salt electrolytes has been focused on the enhancement of ionic conductivity with an addition of nano-ceramic fillers, but the significant drop of the conductivity with storage time is still in question and has been frequently overlooked. The conductivity drop with aging time has been assumed to come from the incorporation of ceramic particles. However, according to authors, the reported high-temperature values of the conductivity of pure $PEO_8LiCIO_4$ electrolytes are nearly in agreements, but the low temperature values are in great discrepancy reaching up to 10000 times. It indicates that the conductivity at ambient temperature is greatly dependent on the thermal history and sample preparations. In this paper, we showed that the ionic conductivities of both $PEO_8LiCIO_4$ and $PEO_8LiClO_4/Al_2O_3$ polymer electrolytes are strongly dependent on the thermal pretreatment and aging time. The conductivity drop with aging time of both ceramic-free and ceramic composite electrolytes has been measured to be nearly parallel. We showed that the conductivity relaxation with aging time is inherent irrespective of the incorporation of nano-ceramic fillers, since the PEO electrolytes at ambient temperature are in two-phase nature being in non-equilibrium state, never reaching completion.

Strain induced/enhanced ferromagnetism in $Mn_3Ge_2$thinfilms

  • Dung, Dang Duc;Feng, Wuwei;Thiet, Duong Van;Sin, Yu-Ri-Mi;Jo, Seong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.135-135
    • /
    • 2010
  • In Mn-Ge equilibrium phase diagram, many Mn-Ge intermetallic phases can be formed with difference structures and magnetic properties. The MnGe has the cubic structure and antiferromagnetic(AFM) with Neel temperature of 197 K. The calculation predicted that the $MnGe_2$ with $Al_2Cu$-type is hard to separate between the paramagnetic(PM) states and the AFM states because this compound displays PM and AFM configuration swith similar energy. Mn-doped Ge showed the FM with Currie temperature of 285 K for bulk samples and 116 K for thin films. In addition, the $Mn_5Ge_3$ compound has hexagonal structure and FM with Curie temperature around 296K. The $Mn_{11}Ge_8$ compound has the orthorhombic structure and Tc is low at 274 K and spin flopping transition is near to 140 K. While the bulk $Mn_3Ge_2$ exhibited tetragonal structure ($a=5.745{\AA}$;$c=13.89{\AA}$) with the FM near to 300K and AFM below 150K. However, amorphous $Mn_3Ge_2$ ($a-Mn_3Ge_2$) was reported to show spin glass behavior with spin-glass transition temperature (Tg) of 53 K. In addition, the transition of crystalline $Mn_3Ge_2$ shifts under high pressure. At the atmospheric pressure, $Mn_3Ge_2$ undergoes the magnetic phase transition from AFM to FM at 158 K. The pressure dependence of the phase transition in $Mn_3Ge_2$ has been determined up to 1 GPa. The transition was found to occur at 1 GPa and 155 K with dT/dP=-0.3K/0.1 GPa. Here report that Ferromagnetic $Mn_3Ge_2$ thin films were successfully grown on GaAs(001) and GaSb(001) substrates using molecular beam epitaxy. Our result revealed that the substrate facilitates to modify magnetic and electrical properties due to tensile/compressive strain effect. The spin-flopping transition around 145 K remained for samples grown on GaSb(001) while it completely disappeared for samples grown on GaAs(001). The antiferromagnetism below 145K changed to ferromagnetism and remained upto 327K. The saturation magnetization was found to be 1.32 and $0.23\;{\mu}B/Mn$ at 5 K for samples grown on GaAs(001) and GaSb(001), respectively.

  • PDF

Moisture Content Change of Korean Red Pine Logs During Air Drying: I. Effective Air Drying Days in Major Regions in Korea (소나무 원목의 천연건조 중 함수율 변화: I. 국내 주요지역의 유효천연건조일수 조사)

  • HAN, Yeonjung;EOM, Chang-Deuk;LEE, Sang-Min;PARK, Yonggun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.721-731
    • /
    • 2019
  • Air drying depends on species, density, dimension of wood, the geographical location of the air drying yard, and the meteorological factors of air drying site. If there are four seasons with large difference in temperature and humidity like in Korea, the research of the meteorological factors is required in air drying site. In this study, effective air drying days (EADD) of 24 regions in Korea were calculated by using the average monthly temperature, relative humidity, and wind speed. The EADD in 24 regions in Korea was ranged from 239 days to 291 days, with an average 265 days. This result is 5 days increased compared to the average of EADD calculated using the meteorological factors from 1955 to 1984. The results of multiple regression analysis on the EADD and meteorological factors showed that EADD affected in the order of temperature, relative humidity, and wind speed. As a result of dividing Korea into 4 zones of EADD, the zones of EADD were moved northward compared to previous study due to global warming. As basic data for predicting the moisture content (MC) distribution of Korean red pine logs during air drying conducted in Seoul, the average monthly temperature, relative humidity and wind speed for three years from 2016 to 2018 were presented, and the corresponding changes of the equilibrium MC were analyzed.

Residual Liquid Behavior Calculation for Vacuum Distillation of Multi-component Chloride System (다성분 염화물계 진공 증류의 잔류 액체 거동 계산)

  • Park, Byung Heung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.179-189
    • /
    • 2014
  • Pyroprocessing has been developed for the purpose of resolving the current spent nuclear fuel management issue and enhancing the recycle of valuable resources. An electrolytic reduction of the pyroprocessing is a process to reduce oxides into metals using LiCl as an electrolyte and requires a post-treatment process due to the inclusion of residual salt in porous metal products. A vacuum distillation has been adopted for various molten salt systems and could be applied to the post-treatment process of the electrolytic reduction. The residual salt in the metal products includes LiCl, alkali chlorides, and alkaline earth chlorides. In this paper, vapor pressures of chlorides have been estimated and the composition changes on the residual liquid during the vacuum distillation process have been calculated. A model combining a material balance and vapor-liquid equilibrium relations has been proposed under a constant vapor discharging flow rate and liquid composition changes have been calculated using the vapor pressures with respect to a dimensionless time. The behaviors have been compared with temperature and molten salt composition changes to simulate the process condition variation. The distillation of the residual salt has been dominated by LiCl which is the main component of the salt and CsCl of which vapor pressure is higher than that of LiCl would be readily removed. RbCl exhibits similar vapor pressure with LiCl and maintains its composition. However, $SrCl_2$ and $BaCl_2$ of which vapor pressures are much lower than that of LiCl are concentrated with time and expected to be possibly precipitated during the distillation when the initial compositions are increased.

Comparison of Methanol with Formamide on Extraction of Nitrogen Heterocyclic Compounds Contained in Model Coal Tar Fraction (모델 콜타르 유분 중에 함유된 질소고리화합물의 추출에 관한 메탄올과 포름아마이드의 비교)

  • Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.234-238
    • /
    • 2015
  • The separation of nitrogen heterocyclic compound (NHC) contained in a model coal tar fraction was compared by the methanol and formamide extraction. The model coal tar fraction comprising four kinds of NHC (NHCs : quinoline, iso-quinoline, indole, quinaldine) and three kinds of bicyclic aromatic compound (BACs : 1-methylnaphthalene, 2-methylnaphthalene, dimethylnaphthalene), biphenyl and phenyl ether was used as a raw material. The aqueous solution of methanol and formamide were used as solvents. A batch-stirred tank was used as the raw material - a solvent contact unit of this work. Independent of the solvent used, the distribution coefficient of NHCs sharply increased by decreasing the initial volume ratio of water to the solvent and increasing the equilibrium operation temperature, whereas, the selectivity of NHCs in reference to BACs decreased. Decreasing the initial volume ratio of solvent to feed resulted in deteriorating distribution coefficients, but the selectivity of NHCs in reference to BAC was almost the constant. The distribution coefficient of NHCs by the methanol extraction was 3~5 times higher than that of NHCs by the formamide extraction, inversely, the selectivity of NHCs based on BACs by the formamide extraction was 3~7 times higher than that of NHCs by the methanol extraction. Furthermore, two different solvent extraction methods by adding the extraction processing speed to the balance between solvency and selectivity of NHCs were compared.