• Title/Summary/Keyword: Equilibrium temperature

Search Result 1,195, Processing Time 0.022 seconds

On response of Surface Equilibrium Temperature for Change of Surface Characteristics : An EBM Study (지표 특성 변화에 대한 평형온도의 반응 연구 : EBM 연구)

  • Seo, Ye-Won;Chu, Jung-Eun;Ha, Kyung-Ja
    • The Korean Journal of Quaternary Research
    • /
    • v.24 no.2
    • /
    • pp.1-11
    • /
    • 2010
  • Energy Balance Model (EBM) was used to experiment the distribution of surface equilibrium temperature which responds to external forcing associated with the surface characteristics. Surface equilibrium temperature is calculated as sum of incoming solar radiation and latitudinal transport is balanced with outgoing infrared radiation. To treat incoming solar radiation, the source of the earth energy, significantly for energy balance, the experiment for surface equilibrium temperature distribution was performed considering the energy balance with the latitudinal albedo change as well as land and sea distribution. In addition, linear albedo change experiment, arctic albedo 5%, 10%, 15% change experiments and the opposite albedo change experiments between arctic and mid-latitudes were performed using incoming solar radiation as an external forcing. Moreover, with and without ice-albedo feedback experiments were performed. Increasing of arctic albedo is blocked out the incoming solar radiation so that it induces decreasing of latitudinal heat transport. It is strengthened energy transport from low latitudes by keeping arctic low energy states. Therefore the temperature change in the mid-latitudes exhibits larger response than that of arctic due to the difference of transport. The land which has lower heat capacity than sea can be reach to equilibrium temperature shortly. Also land is more sensitive to temperature change with respects to albedo. Thus it induces the thermal difference between land and sea. As a result, the equilibrium temperature exhibits differently as the difference of albedo and heat capacity which are the one of surface characteristics. Surface equilibrium temperature decreases as albedo increase and the ratio of temperature change is large as heat capacity is small. The decreasing of surface equilibrium temperature with respects to increasing of linear albedo is accelerated by ice-albedo feedback. However local change of surface equilibrium temperature decreases non-linearly.

  • PDF

Hypersonic Viscous Interaction of Wedge Flows (극초음속 쐐기 유동의 Viscous Interaction)

  • Kim K. H.;Rho O. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.40-45
    • /
    • 1996
  • This paper discribes the viscous interaction of Hypersonic Wedge Flows using Roe FDS and AUSM+. For this purpose we developed the frozen and the equilibrium code and numerically simulated the viscous interaction by changing the surface temperature and the mach number. We used curve fitting data in NASA Reference Publication 1181, 1260 to calculate equilibrium properties. We compare the equilibrium flow with the frozen flow. We conclude that the mach number and the surface temperature are significant parameters, as the surface temperature and the mach number increase the viscous interaction becomes stronger, and we must consider high-temperature effects in hypersonic flow

  • PDF

The Variation of Radiative Equilibrium Temperatures with the Ice Crystal Habits and Sizes in Cirrus Clouds (권운 내 빙정의 종류와 크기에 따른 복사 평형 온도 변화)

  • Jee, Joon-Bum;Lee, Won-Hak;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.427-436
    • /
    • 2010
  • The single-scattering optical properties of ice crystals in cirrus clouds by the aircraft measurement data were investigated, and the radiative equilibrium temperatures and radiative fluxes were calculated and analyzed by radiative convective model with the variations of ice crystal habits and sizes in cirrus clouds. The homogeneous cloud is assumed to be in the layer 200~260 hPa with an ice crystal content of $10gm^{-2}$ for the flux calculation. The profiles of temperature, humidity, and ozone typical of mid-latitude summer are used. The surface albedo is assumed to be 0.2 for all spectral bands and the cosine of solar zenith angles is 0.5. The result of radiative equilibrium temperature at surface was less than surface temperature of the standard atmosphere data in case of smaller effective ice crystal size and larger optical thickness. The column, aggregation and plate in 6 ice crystal habits were the most effective in positive greenhouse effect and bullet-4 was the worst in it. At the surface, the maximum difference of equilibrium temperature by 6 kinds of ice crystal habits were about 3~15 K with 30 sample aircraft measurement data.

Numerical Analysis on Heat Transfer Characteristics in Silicon Boated by Picosecond-to-Femtosecond Ultra-Short Pulse Laser (펨토초급 극초단 펄스레이저에 의해 가열된 실리콘 내의 열전달 특성에 관한 수치해석)

  • 이성혁;이준식;박승호;최영기
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1427-1435
    • /
    • 2002
  • The main aim of the present article is numerically to investigate the micro-scale heat transfer phenomena in a silicon microstructure irradiated by picosecond-to-femtosecond ultra-short laser pulses. Carrier-lattice non-equilibrium phenomena are simulated with a self-consistent numerical model based on Boltzmann transport theory to obtain the spatial and temporal evolutions of the lattice temperature, the carrier number density and its temperature. Especially, an equilibration time, after which carrier and lattice are in equilibrium, is newly introduced to quantify the time duration of non-equilibrium state. Significant increase in carrier temperature is observed for a few picosecond pulse laser, while the lattice temperature rise is relatively small with decreasing laser pulse width. It is also found that the laser fluence significantly affects the N 3 decaying rate of Auger recombination, the carrier temperature exhibits two peaks as a function of time due to Auger heating as well as direct laser heating of the carriers, and finally both laser fluence and pulse width play an important role in controlling the duration time of non-equilibrium between carrier and lattice.

An Equilibrium Analysis to Determine the Speciation of Metals in the Incineration of Waste Containing Chlorine and Sulfur (염소와 황을 함유한 폐기물의 소각시 생성되는 유해 중금속류 결정에 대한 화학평형 계산)

  • Lee, Jung-Jin;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.31-39
    • /
    • 1996
  • An equilibrium analysis was carried out to determine principal species in the incineration of hazardous waste, which was assumed as a compound of hydrocarbon fuel, chlorine, sulfur, and heavy metals, and their behaviors with variation of temperature, chlorine and sulfur concentrations. Calculated results showed that the most important parameter influencing the principal species was temperature. Chlorine concentration affected on mole fractions of the species, especially at high temperature. Existence of sulfur had a significant effect on the species at low temperature, regardless of surfur concentration. Generally, principal species at high temperature were chlorides and oxides, while the principal species at low temperature were sulfides. As temperature increased, mole fractions of the principal species increased at low temperature, however, mole fractions of some metal species decreased at high temperature.

  • PDF

Application of a non-equilibrium ionization model to rapidly heated solar plasmas

  • Lee, Jin-Yi;Raymond, John C.;Reeves, Katharine K.;Shen, Chengcai;Moon, Yong-Jae;Kim, Yeon-Han
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.53.1-53.1
    • /
    • 2019
  • We apply a non-equilibrium ionization (NEI) model to a supra-arcade plasma sheet, shocked plasma, and current sheet. The model assumes that the plasma is initially in ionization equilibrium at low temperature, and it is heated rapidly by a shock or magnetic reconnection. The model presents the temperature and characteristic timescale responses of the Atmospheric Imaging Assembly (AIA) on board Solar Dynamic Observatory and X-ray Telescope (XRT) on board Hinode. We compare the model ratios of the responses between different passbands with the observed ratios of a supra-arcade plasma sheet on 2012 January 27. We find that most of observations are able to be described by using a combination of temperatures in equilibrium and the plasma closer to the arcade may be close to equilibrium ionization. We also utilize the set of responses to estimate the temperature and density for shocked plasma associated with a coronal mass ejection on 2010 June 13. The temperature, density, and the line of sight depth ranges we obtain are in reasonable agreement with previous works. However, a detailed model of the spherical shock is needed to fit the observations. We also compare the model ratios with the observations of a current sheet feature on 2017 September 10. The long extended current sheet above the solar limb makes it easy to analyze the sheet without background corona. We find that the sheet feature is far from equilibrium ionization while the background plasma is close to equilibrium. We discuss our results with the previous studies assuming equilibrium ionization.

  • PDF

Moisture Sorption and Desorption Characteristics of Tobacco Types. (담배종류별 흡습 및 방습 특성)

  • 김용옥;정한주;공판임;장기철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.26 no.1
    • /
    • pp.43-49
    • /
    • 2004
  • This study was carried out to investigate moisture sorption and desorption characteristics followed by tobacco type. Experiments were performed at various temperature(5, 15, 25, 40 $^{\circ}C$) and relative humidity range (11~84 %) controlled by saturated salt solution. Regression equation was obtained to predict equilibrium moisture according to various relative humidity, temperature and tobacco types. The obtained regression equation showed high $R^2$(above 0.95) and predicted accurate equilibrium moisture. Equilibrium moisture contents declines in the following order when a relative humidity is 50 % or above: expanded stem, flue-cured, expanded tobacco, reconstituted tobacco, USA flue-cured, orient, burley. To maintain 13 % moisture of each tobacco type in the range of 5~40 $^{\circ}C$ it is recommendable to control relative humidity 49~56 % for expanded stem, 50~57 % for flue-cured, 54~61 % for USA flue-cured, 56~60 % for reconstituted tobacco, 57~62 % for expanded tobacco, 58~64 % for orient and 58~65 % for burley, respectively. It means that the relative humidity of each tobacco type should be differently controlled to maintain the same moisture under the same temperature. In the range of 5~25 $^{\circ}C$, the lower temperature showed the higher equilibrium moisture content.

An Equilibrium Analysis to Determine the Speciation of Metals in the Incineration of Waste Containing Chlorine (염소를 함유한 폐기물의 소각시 생성되는 유해 중금속류 결정에 대한 화학 평형 계산)

  • ;;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3372-3381
    • /
    • 1995
  • An equilibrium analysis was carried out to determine principal species of heavy metals in waste incineration and their behaviors with variation of temperature, chlorine concentration, excess air ratio, and C/H ratio. The waste was assumed as a compound of hydrocarbon fuel, chlorine, and metals. Calculated results showed that the most important parameter to determine the principal species was temperature. Chlorine concentration also affected on mole fractions of the principal species. Generally principal species at high temperature were chlorides while there were some metals of which principal species were oxides. At low temperature mole fractions of the principal species increased, but at high temperature mole fractions of some metal species decreased. C/H ratio of the hydrocarbon fuel and excess air ratio had little effect on mole fractions of the metal species, compared to the temperature and chlorine concentration.

Characteristics of Heavy Metal Extraction by Benzamidoxime (Benzamidoxime에 의한 중금속의 추출특성)

  • 이상훈;윤영삼
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.371-377
    • /
    • 1999
  • The effects of benzamidoxime concentration, solvents and temperature on the degree of metal extraction were investigated to apply benzamidoxime to heavy metal extraction as chelating agent. Benzamidoxime was synthesized from benzonitrile with hydroxylamine. The chemical structure of benzamidoxime was identified. The degree of heavy metal extraction was increased with increasing the concentration of benzamidoxime and decreasing the extraction temperature. Benzamidoxime was found to be an concentration of benzamidoxime and decreasing the extraction temperature. Benzamidoxime was found to be an effective extractant for Cu-extraction by benzene or chloroform. The relationship between the thermodynamic overall equilibrium constant and absolute temperature was expressed as log K = -5.56 + $855T^{-1}$. Heat of extraction, $$\Delta$H^0$ were calculated from overall equilibrium constants at various temperature and the extraction reactionby benzamidoxime was found to be exthothermic.

  • PDF