• 제목/요약/키워드: Equilibrium evaporation

검색결과 44건 처리시간 0.025초

DSMC(Direct Simulation Monte Carlo)방법을 이용한 마이크로관 내에서의 2 상유동에 관한 연구 (The Study on the Two-Phase Flow in the Microchannel Using DSMC(Direct Simulation Monte Carlo) Method)

  • 이진호;유동훈;이태홍
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1667-1672
    • /
    • 2003
  • In contrast to the high demand for MEMS devices, microflow analysis is not feasible even for single-phase flow with conventional Navier-Stokes equation because of non-continuum effect when characteristic dimension is comparable with local mean free path. DSMC is one of particle based DNS(Direct Numerical Simulation) methods that uses no continuum assumption. In this paper, gas flow in microchannel is studied using DSMC. Interfacial shear and flow characteristics are observed and compared with the results of gas flow that is in contact with liquid case and solid wall case. The simulation is limited to the case of equilibrium steady state and evaporation/condensation coefficient is assumed to be the same and unity. System temperature remains constant and the interfacial shear appears to be small compared to the result with solid wall. This is because particles evaporated and reflected from the liquid surface form high density layer near the interface with liquid flow.

압축수의 임계유량에 관한 해석적 연구 (An Analytical Study for Critical Mass Flowrate of Compressed Water)

  • 김희동;김재형;한민교;박경암
    • 한국추진공학회지
    • /
    • 제7권1호
    • /
    • pp.57-65
    • /
    • 2003
  • 본 연구에서는 압축수가 노즐을 통해 급격히 팽창될 때 기액이상류가 플래싱 증발하게 되는 이상류의 임계유동을 Isentropic-Homogeneous-Equilibrium model과 Leung model을 사용해 해석하였다. 그 결과 이상유동은 연속/불연속적 초크로 될 수 있으며, 정체점의 압력이 10Mpa일 경우에는 단상류 유동의 초크현상과 유사한 연속적인 초크현상이 정체점의 아냉각도가 10K이하일 경우에만 발생한다는 것을 알았다.

고압 환경하에서 탄화수소 연료 액적의 기화특성 연구 (Vaporization of Hydrocarbon Fuel Droplet in High Pressure Environments)

  • 김성엽;윤웅섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.127-132
    • /
    • 2003
  • A study of high-pressure n-heptane droplet vaporization is conducted with emphasis placed on equilibrium at vapor-liquid interface. General frame of previous rigorous model[1] is retained but tailored for flash equilibrium calculation of vapor-liquid interfacial thermodynamics. The model is based on complete time-dependent conservation equations with a full account of variable properties and vapor-liquid interfacial thermodynamics. The influences of high-pressure phenomena, including ambient gas solubility, thermodynamic non-ideality, and property variation on the droplet evaporation are investigated. The governing equations and associated moving interfacial boundary conditions are solved numerically using a implicit scheme with the preconditioning method and the dual time integration technique. And a parametric study of entire droplet vaporization history as a function of ambient pressure, temperature has been conducted. Some computational results are compared with Sato's experimental data for the validation of calculations. For low ambient temperatures, the droplet lifetime first increases with pressures, then decreases for high pressures. For higher ambient temperatures, the droplet lifetime increase with less amplitude than that of low ambient temperatures, which then decreases with more amplitude than that of low temperatures. The solubility of nitrogen can not be neglected in the high pressure and it becomes higher as the pressure goes up.

  • PDF

러빙 처리된 표면의 적층 절연막을 가지는 Pentacene TFT의 전기적 특성 (ELECTRICAL CHARACTERISTICS OF PENTACENE THIN FILM TRANSISTORS WITH STACKED AND SURFACE-TREATED GATE INSULATORS)

  • 강창헌;이종혁;박재훈;최종선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1546-1548
    • /
    • 2002
  • In this paper, the electrical characteristics of pentacene thin film transistors(TFTs) with stacked and surface-treated gate insulators have been investigated. The semiconductor layer of pentacene was thermally evaporated onto the stacked gate insulators. For the gate insulating materials. PVP(PolyvinylPhenol) and polystyrene were spin-coated with two different stacking orders, PVP-polystyrene and polystyrene-PVP. Rapid solvent evaporation during the spin-coating processes of these insulating layers produces non-equilibrium phase morphologies accompanied by surface undulations on gate insulator interfaces. This non-equilibrium phase morphology affects the growth mode of the subsequent pentacene layer. Therefore, in order to smoothen the gate dielectric surfaces, gate dielectric surfaces were rubbed laterally along the direction from the drain to the source TFTs with with stacked and surface-treated gate insulators have provided improved operational characteristics.

  • PDF

Preparation and Oxygen Binding Properties of Ultra-Thin Polymer Films Containing Cobalt(II) meso-Tetraphenylporphyrin via Plasma Polymerization

  • Choe, Youngson
    • Macromolecular Research
    • /
    • 제10권5호
    • /
    • pp.273-277
    • /
    • 2002
  • Ultra-thin polymer films containing cobalt(II) meso-tetraphenylporphyrin(CoTPP) have been prepared by vacuum codeposition of the metal complex and trans-2-butene as an organic monomer using an inductively coupled RF glow discharge operating at 7-9 Watts. The polymer films were characterized by sorption measurements. Sorption data obtained for polymer films containing CoTPP indicate that the CoTPP molecules are capable of reversibly binding oxygen molecules. It was found that the adjacent CoTPP molecules in the aggregated metal complex phase could irreversibly share the oxygen molecules. A dispersion of the metal complex molecules in the polymer matrix was made to maintain the reversible reactivity of the metal complex molecules with oxygen in the polymer films via vacuum evaporation process. The Henry mode solubility constant, the Langmuir mode capacity constant, the amount of binding oxygen, and the dissociation equilibrium in the dual mode sorption theory were discussed.

A Brief Comment on Atom Probe Tomography Applications

  • Seol, Jae-Bok;Kim, Young-Tae;Park, Chan-Gyung
    • Applied Microscopy
    • /
    • 제46권3호
    • /
    • pp.127-133
    • /
    • 2016
  • Atom probe tomography is a time-of-flight mass spectrometry-based microanalysis technique based on the field evaporation of surface atoms of a tip-shaped specimen under an extremely high surface electric field. It enables three-dimensional characterization for deeper understanding of chemical nature in conductive materials at nanometer/atomic level, because of its high depth and spatial resolutions and ppm-level sensitivity. Indeed, the technique has been widely used to investigate the elemental partitioning in the complex microstructures, the segregation of solute atoms to the boundaries, interfaces, and dislocations as well as following of the evolution of precipitation staring from the early stage of cluster formation to the final stage of the equilibrium precipitates. The current review article aims at giving a comment to first atom probe users regarding the limitation of the techniques, providing a brief perspective on how we correctly interprets atom probe data for targeted applications.

야외 운동복에서의 수분전달 (The Water Vapour Transfer on Outdoor Activities Clothing)

  • Oh, Ae-Gyeong
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.115-118
    • /
    • 2001
  • The water vapour permeability of clothing materials is a critical property for clothing systems that must maintain thermal equilibrium for the wearer. The evaporation of perspiration provides the means of cooling the human body. The perspiration should evaporate from the surface of the skin and pass as water vapour through the clothing, which must be permeable for comfort. The primary objectives in this study of the transfer through fabrics of water vapour are to measure this property in a quantitative manner appropriate to clothing systems and to provide an increased understanding of various types of fabric in water vapour transfer. (omitted)

  • PDF

차량용 연소식 난방기의 열 및 유동특성에 대한 수치연구 (Numerical Investigation on the Thermal and Flow Characteristics of Combustion Heater for Commercial Vehicle)

  • 황창환;백승욱
    • 한국연소학회지
    • /
    • 제16권2호
    • /
    • pp.40-46
    • /
    • 2011
  • The diesel pre-heater has being used in cabin heating and coolant heating of engine to reduce the engine warm up time for commercial vehicle. The pre-heaters are classified as diesel spray combustor and it forms diffusion flame. By using swirler, a recirculation flow of hot product gases is established near the fuel nozzle and it helps the maintaining of diffusion flame. The design difference of swirler can affect on reaction characteristics and temperature distribution inside pre-heater. The purpose of this study is the investigation of the effect of swirler configuration on combustion characteristics. To solve spray combustion problem, the Euler-Lagrange approach discrete model is used to track droplet trajectory and evaporation history. The PDF equilibrium model is used for chemical reaction model. These models are implemented into the FLUENT code.

Open-Loop Responses of Droplet Vaporization to Linear Normal Acoustic Modes

  • Kim, S.Y.;W.S. Yoon
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.155-164
    • /
    • 2004
  • In order for studying pressure-coupled dynamic responses of droplet vaporization, open-loop experiment of an isolated droplet vaporization exposed to pressure perturbations in stagnant gaseous environment is numerically conducted, Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous nitrogen. Results show that wave instability in view of pressure-coupled vaporization response seems more susceptible at higher pressures and higher wave frequencies. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Augmentation of perturbation frequency also enhances amplification due to the reduction of phase differences between pressure perturbation and surface temperature fluctuation.

  • PDF

경화하는 콘크리트의 수분확산도 모형 (A Moisture Diffusivity Model of Hardening Concrete)

  • 정진훈
    • 한국도로학회논문집
    • /
    • 제7권1호
    • /
    • pp.31-38
    • /
    • 2005
  • 콘크리트의 타설 직후, 상대적으로 콘크리트는 높은 증기압을 갖게 되며, 주위의 대기는 낮은 증기압을 갖게 된다. 콘크리트와 대기 간의 증기압의 평형을 유지하려는 작용 때문에 콘크리트의 표면에서 대기로 수분이 이동하는 증발이 발생한다. 표면에서 일어나는 증발로 인하여 콘크리트의 내부에서도 증기압의 차이가 발생하며, 이로 인하여 콘크리트 내부의 수분이 서서히 표면으로 이동하는 수분확산이 일어난다 이 수분확산의 속도는 콘크리트의 소성 균열, 수화도, 강도와 같은 요인으로 작용하여 콘크리트의 품질에 크게 영향을 미친다. 본 논문에서는 콘크리트 수분확산의 지배방정식과 실내에서 측정된 콘크리트의 온도와 상대습도를 이용하여 초기재령의 콘크리트의 수분확산도를 역계산하였다. 역계산된 콘크리트의 수분확산도를 이용하여 콘크리트의 수분확산도 모형을 개발하였으며, 이를 입력값으로 사용하여 유한요소법에 의해 콘크리트의 상대습도를 계산하였다. 그 결과로서 계산된 상대습도는 측정된 상대습도와 대체로 일치하였다.

  • PDF