• Title/Summary/Keyword: Equilibrium diagram

Search Result 92, Processing Time 0.023 seconds

Strain induced/enhanced ferromagnetism in $Mn_3Ge_2$thinfilms

  • Dung, Dang Duc;Feng, Wuwei;Thiet, Duong Van;Sin, Yu-Ri-Mi;Jo, Seong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.135-135
    • /
    • 2010
  • In Mn-Ge equilibrium phase diagram, many Mn-Ge intermetallic phases can be formed with difference structures and magnetic properties. The MnGe has the cubic structure and antiferromagnetic(AFM) with Neel temperature of 197 K. The calculation predicted that the $MnGe_2$ with $Al_2Cu$-type is hard to separate between the paramagnetic(PM) states and the AFM states because this compound displays PM and AFM configuration swith similar energy. Mn-doped Ge showed the FM with Currie temperature of 285 K for bulk samples and 116 K for thin films. In addition, the $Mn_5Ge_3$ compound has hexagonal structure and FM with Curie temperature around 296K. The $Mn_{11}Ge_8$ compound has the orthorhombic structure and Tc is low at 274 K and spin flopping transition is near to 140 K. While the bulk $Mn_3Ge_2$ exhibited tetragonal structure ($a=5.745{\AA}$;$c=13.89{\AA}$) with the FM near to 300K and AFM below 150K. However, amorphous $Mn_3Ge_2$ ($a-Mn_3Ge_2$) was reported to show spin glass behavior with spin-glass transition temperature (Tg) of 53 K. In addition, the transition of crystalline $Mn_3Ge_2$ shifts under high pressure. At the atmospheric pressure, $Mn_3Ge_2$ undergoes the magnetic phase transition from AFM to FM at 158 K. The pressure dependence of the phase transition in $Mn_3Ge_2$ has been determined up to 1 GPa. The transition was found to occur at 1 GPa and 155 K with dT/dP=-0.3K/0.1 GPa. Here report that Ferromagnetic $Mn_3Ge_2$ thin films were successfully grown on GaAs(001) and GaSb(001) substrates using molecular beam epitaxy. Our result revealed that the substrate facilitates to modify magnetic and electrical properties due to tensile/compressive strain effect. The spin-flopping transition around 145 K remained for samples grown on GaSb(001) while it completely disappeared for samples grown on GaAs(001). The antiferromagnetism below 145K changed to ferromagnetism and remained upto 327K. The saturation magnetization was found to be 1.32 and $0.23\;{\mu}B/Mn$ at 5 K for samples grown on GaAs(001) and GaSb(001), respectively.

  • PDF

Comparison of Hydrochemical Characteristics of Groundwater in the Southern Area and the Northwestern Area, Pusan (부산 남부지역 지하수와 서북부지역 지하수의 수리화학적 특성 비교)

  • 함세영;조명희;성익환;이병대;조병욱;심형수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.140-151
    • /
    • 1999
  • Groundwater samples from the southern area composed of andesitic rocks and the northwestern area composed of granite in Pusan city, have been collected and analyzed. According to the Piper diagram. groundwater in the southern area belongs to Ca$\^$2+/-HCO$_3$$\^$-/ and Ca$\^$2+/-(Cl$\^$-/+SO$_4$$\^$2-/) types, and that in the northwestern area mostly belongs to Ca$\^$2+/-HCO$_3$$\^$-/ type and partly Na$\^$+/-HCO$_3$$\^$-/ type. Two factors (factor 1 and factor 2) were obtained from the result of the factor analysis in the southern area. Factor 1, consisting of Mg$\^$2+/, Ca$\^$2+/, Cl$\^$-/, SO$_4$$\^$2-/, NH$_4$$\^$+/, EC and NO$_3$$\^$-/ is represented by the dissolution of Ca-plagioclase and calcite, and the influence of anthropogenic sources. Factor 2, consisting of K$\^$+/, Na$\^$+/. SiO$_2$, SO$_4$$\^$2-/, and HCO$_3$$\^$-/ is mainly represented by the dissolution of feldspar. Three factors were obtained from the result of the factor analysis in the northwestern area Factor 1, consisting of Na$\^$+/, K$\^$+/, NH$_4$$\^$+/, Cl$\^$-/, SO$_4$$\^$2-/ and NO$_3$$\^$-/ explains dissolution of plagioclase and mica, the influence of anthropogenic sources and salt water. Factor 2, consisting of Ca$\^$2+/ and HCO$_3$$\^$-/ explains the dissolution of Ca-plagioclase. Factor 3, consisting of Mg$\^$2+/ and SiO$_2$, explains the dissolution of silicate minces. and contaminants. Based on the phase stability diagrams, groundwater both in the southern and in the northwestern area is mostly in equilibrium with kaolinite. Cl$\^$-/ with respect to Na$\^$+/, Ca$\^$2+/, Mg$\^$2+/, K$\^$+/, SO$_4$$\^$2-/ and HCO$_3$$\^$-/ indicates that both the northwestern area and the southern area are influenced by the salt water.

  • PDF