• Title/Summary/Keyword: Equilibrium constants

Search Result 254, Processing Time 0.025 seconds

Expansion of the equilibrium constants for the temperature range of 300K to 20,000K

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.455-466
    • /
    • 2016
  • Chemical-kinetic parameters of the equilibrium constants to evaluate the reverse rate coefficients in the shock layer of a blunt body and the expanding flows are derived for the temperature range from 300 K to 20,000 K. The expanded equilibrium constants for the chemical reactions of the dissociation, ionization, associative ionization, and neutral and charge exchange reactions of the atmospheric species and carbon materials are proposed in the present work. In evaluating the equilibrium constants, the inter-nuclear potential energies of the molecular species are calculated by the analytical potential function of the Hulburt-Hirschfelder model, and the parameters of the analytical model are determined from the semi-classically calculated RKR potentials. The electronic states and energies of the atoms are calculated by the electronic energy grouping model, and the rovibrational states and energies of each electronic states of the molecules are evaluated by the WKB method. The expanded equilibrium constants for 31 types of the reactions are provided for the best curve-fit functions, and the recombination reaction rate coefficients evaluated from the present equilibrium constants are compared with existing measured values.

Experimental Determination of Equilibrium Constants of Copper Complexes in Aqueous Environment

  • Cho, Young-Il
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.555-562
    • /
    • 2012
  • The experimental determination of equilibrium constants is required to estimate concentrations of reagents and/or products in environmental chemical reactions. For an example, the choice of copper (Cu) complexation reactions was motivated by their fast kinetics and the ease of measurement of Cu by an ion-sensitive electrode. Each individual titrant of sulfate ($SO{_4}^{2-}$) and oxalate ($C_2O{_4}^{2-}$) was expected to have its own unique characteristics, depending on the bonding in Culigands connected to the aqueous species. The complexation reaction of Cu with $SO{_4}^{2-}$ somewhat fast reached equilibrium status compared with $C_2O{_4}^{2-}$. The experimental equilibrium constants ($K_{eq}$) of copper sulfate ($CuSO_4$) and copper oxalate ($CuC_2O_4$) were determined $10^{2.2}$ and $10^{3{\sim}4.3}$, respectively.

Synthesis and Exchange Properties of Sulfonated Poly(phenylene sulfide) with Alkali Metal Ions in Organic Solvents

  • Son, Won Geun;Kim, Sang Heon;Park, Su Gil
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • Sulfonated poly(phenylene sulfide) (SPPS) polymers were prepared by sulfonation of poly[methyl[4-(phenylthio) phenyl]sulfonium trifluoromethanesulfonate] (PPST) with fumic sulfonic acid (10% $SO_3-H_2SO_4$) and demethylation with aqueous NaOH solution. The equilibrium constants of ion exchange reactions between alkali metal cations ($Li^+,\;Na^+,\;and\;K^+$) and SPPS ion exchanger in organic solvents such as tetrahydrofuran (THF) and dioxane were measured. The equilibrium constants of ion exchange reactions increased as the polarity of the solvent increased, and the reaction temperature decreased. The equilibrium constants of the ion exchange reaction ($K_{eq}$) also increased in the order of $Li^+,\;Na^+,\;and\;K^+$. To elucidate the spontaneity of the exchange reaction in organic solvents, the enthalpy, entropy, and Gibbs free energy were calculated. The enthalpy of reaction ranged from -0.88 to -1.33 kcal/mol, entropy ranged from 1.42 to 4.41 cal/Kmol, and Gibbs free energy ranged from -1.03 to -2.55 kcal/mol. Therefore, the exchange reactions were spontaneous because the Gibbs free energies were negative. The SPPS ion exchanger and alkali metal ion bounding each other produced good ion exchange capability in organic solvents.

Comparison and Estimation of Equilibrium Constants for Deoxyribonucleosides by Plate Theory and Moment Method (단이론과 모멘트방법을 이용한 데옥시리보뉴클레오사이드의 평형상수의 계산 및 비교)

  • Lee, Ju Weon;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.403-409
    • /
    • 1997
  • The equilibrium constants of five deoxyribonucleosides (dDyd, dUrd, dGuo, dThd, dAdo) were estimated by the plate theory and the moment method under isocratic conditions of the Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The mobile phase in this system was composed of water and organic modifiers(acetonitrile and methanol) The plate theory of linear adsorption isotherm was treated on the basis of continuous flow of eluent through the plates of the column. The moment method was utilized to find the equilibrium constant from the first absolute moment of experimental data. The equilibrium constants of five deoxyribonucleosides in the two methods were very close, and also the equilibrium constants calculated by capacity factor were similar to those by both the plate theory and the moment method. The equilibrium constant was expressed as a semi-log function of the quantity of organic modifier. Excellent agreements between the calculated elusion profile by the plate theory and the experimental data were observed.

  • PDF

The Effect of Alkali Metal Ions on Nucleophilic Substitution Reactions of Alkali Metal Ethoxides with S-p-nitrophenyl 2-thiofuroate and 2-Thiophenethiocarboxylate in Absolute Ethanol

  • 엄익환;이윤정;남정현;권동숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.749-754
    • /
    • 1997
  • Rate constants have been measured spectrophotometrically for the reactions of alkali metal ethoxides (EtOM) with S-p-nitrophenyl 2-thiofuroate (1b) and 2-thiophenethiocarboxylate (2b) in absolute ethanol at 25.0±0.1 ℃. 1b is observed to be more reactive than 2b toward all the EtOM studied. The reactivity of EtOM is in the order EtOK > EtONa > EtO- > EtOLi for both substrates, indicating that K+ and Na+ behave as a catalyst while Li+ acts as an inhibitor in the present system. Equilibrium association constants of alkali metal ions with the transition state (KaTS) have been calculated from the known equilibrium association constants of alkali metal ion with ethoxide ion (Ka) and the rate constants for the reactions of EtOM with 1b and 2b. The catalytic effect (KaTS/Ka) is larger for the reaction of 1b than 2b, and decreases with decreasing the size of the alkali metal ions. Formation of 5-membered chelation at the transition state appears to be responsible for the catalytic effect.

Characteristics of Heavy Metal Extraction by Benzamidoxime (Benzamidoxime에 의한 중금속의 추출특성)

  • 이상훈;윤영삼
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.371-377
    • /
    • 1999
  • The effects of benzamidoxime concentration, solvents and temperature on the degree of metal extraction were investigated to apply benzamidoxime to heavy metal extraction as chelating agent. Benzamidoxime was synthesized from benzonitrile with hydroxylamine. The chemical structure of benzamidoxime was identified. The degree of heavy metal extraction was increased with increasing the concentration of benzamidoxime and decreasing the extraction temperature. Benzamidoxime was found to be an concentration of benzamidoxime and decreasing the extraction temperature. Benzamidoxime was found to be an effective extractant for Cu-extraction by benzene or chloroform. The relationship between the thermodynamic overall equilibrium constant and absolute temperature was expressed as log K = -5.56 + $855T^{-1}$. Heat of extraction, $$\Delta$H^0$ were calculated from overall equilibrium constants at various temperature and the extraction reactionby benzamidoxime was found to be exthothermic.

  • PDF

Deuterium Isotope Effects on the $^{13}C$ Chemical Shifts of Cyclooctanone-2-D

  • 정미원
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.836-840
    • /
    • 1998
  • The intrinsic and equilibrium isotope effects on the 13C NMR chemical shift of the cyclooctanone-2-D were investigated. Equilibrium constants and changes in the free energies, enthalpy, entropy, which are derived from the temperature dependence of the isotope shifts, are reported for this isotopomer.

A Theoretical Investigation of FCO and $FCO^+$

  • Sung, Eun-Mo;Lee, Ho-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.511-515
    • /
    • 1990
  • Ab initio calculations with MP3 and CISD method were performed for the FCO and $FCO^+$. The equilibrium geometry of FCO shows the reasonable agreement with experimental values. $FCO^+$ has a linear geometry with $R_{CF}=1.213\;and\;R_{CO}=1.118{\AA}$. The quadratic force constants of $FCO^+$ are 23.21 md ${\AA}^{-1}$ for CO stretch and 12.38 md ${\AA}^{-1}$ for CF stretch. The cubic force constants and the other molecular constants are also calculated.

Modified Ammonia Removal Model Based on Equilibrium and Mass Transfer Principles

  • Shanableh, A.;Imteaz, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1920-1926
    • /
    • 2010
  • Yoon et $al.^1$ presented an approximate mathmatical model to describe ammonia removal from an experimental batch reactor system with gaseous headspace. The development of the model was initially based on assuming instantaneous equilibrium between ammonia in the aqueous and gas phases. In the model, a "saturation factor, $\beta$" was defined as a constant and used to check whether the equilibrium assumption was appropriate. The authors used the trends established by the estimated $\beta$ values to conclude that the equilibrium assumption was not valid. The authors presented valuable experimental results obtained using a carefully designed system and the model used to analyze the results accounted for the following effects: speciation of ammonia between $NH_3$ and $NH^+_4$ as a function of pH; temperature dependence of the reactions constants; and air flow rate. In this article, an alternative model based on the exact solution of the governing mass-balance differential equations was developed and used to describe ammonia removal without relying on the use of the saturation factor. The modified model was also extended to mathematically describe the pH dependence of the ammonia removal rate, in addition to accounting for the speciation of ammonia, temperature dependence of reactions constants, and air flow rate. The modified model was used to extend the analysis of the original experimental data presented by Yoon et $al.^1$ and the results matched the theory in an excellent manner.

Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model

  • Yang, Yi;Xie, Zhuangning;Gu, Ming
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.465-480
    • /
    • 2017
  • Modelling an equilibrium atmospheric boundary layer (ABL) in computational wind engineering (CWE) and relevant areas requires the boundary conditions, the turbulence model and associated constants to be consistent with each other. Among them, the inflow boundary conditions play an important role and determine whether the equations of the turbulence model are satisfied in the whole domain. In this paper, the idea of modeling an equilibrium ABL through specifying proper inflow boundary conditions is extended to the SST $k-{\omega}$ model, which is regarded as a better RANS model for simulating the blunt body flow than the standard $k-{\varepsilon}$ model. Two new sets of inflow boundary conditions corresponding to different descriptions of the inflow velocity profiles, the logarithmic law and the power law respectively, are then theoretically proposed and numerically verified. A method of determining the undetermined constants and a set of parameter system are then given, which are suitable for the standard wind terrains defined in the wind load code. Finally, the full inflow boundary condition equations considering the scale effect are presented for the purpose of general use.