• Title/Summary/Keyword: Equilibrium condensation

Search Result 51, Processing Time 0.019 seconds

The Unsteady Cavity Flow Oscillation in Supersonic Moisture Air Stream (초음속 습공기 유동에서 비정상 공동유동의 진동)

  • Shin, Choon-Sik;Lee, Jong-Sung;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.341-344
    • /
    • 2008
  • Numerical simulations have been carried out for a supersonic two-dimensional flow over open, rectangular cavities (length-to-depth ratios are L/D = 1.0) in order to investigate the effect of non-equilibrium condensation of moist air on supersonic flows around the cavity for the flow Mach number 1.83 at the cavity entrance. In the present computational investigation, a condensing flow was produced by an expansion of moist air in a Laval nozzle. The results obtained showed that in the case with non-equilibrium condensation for L/D = 1.0, amplitudes of oscillation in the cavity became smaller than those without the non-equilibrium condensation. Furthermore, the occurrence of the non-equilibrium condensation reduced the peaks of power spectrum density and the frequency of the flow field oscillation increased in comparison with the case of $S_0$ = 0.

  • PDF

Modeling of Liquid-Vapor Interfaces of Condensation Flows Based on Molecular Dynamics Simulations

  • Kannan, Hiroki;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.418-425
    • /
    • 2004
  • Characteristics of a liquid-vapor interface where a nonequilibrium condensation flow exists are considered based on molecular dynamics simulations, The condensation coefficient, the velocity distributions of the reflected and evaporated molecules and the number flux of the evaporated molecules are compared with those under the liquid-vapor equilibrium. The comparison shows that the condensation coefficient under the nonequilibrium condensation is slightly larger and the number flux of the evaporated molecules is considerably smaller than those under the liquid-vapor equilibrium. The net condensation flux under the nonequilibrium condensation is underestimated if it is evaluated from the condensation coefficient and the number flux of the evaporated molecules under the liquid-vapor equilibrium. However the underestimation is relatively small.

  • PDF

Passive Control of the Condensation Shock Wave Oscillation in a Supersonic Nozzle (초음속 노즐에서 발생하는 응축충격파 진동의 피동제어)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.951-958
    • /
    • 2002
  • Rapid expansion of a moist air or a stream through a supersonic nozzle often leads to non-equilibrium condensation shock wave, causing a considerable energy loss in flow field. Depending on amount of latent heat released due to non-equilibrium condensation, the flow is highly unstable or a periodical oscillation accompanying the condensation shock wave in the nozzle. The unsteadiness of the condensation shock wave is always associated with several kinds of instabilities as well as noise and vibration of flow devices. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for the purpose of alleviation of the condensation shock oscillations in a transonic nozzle. A droplet growth equation is coupled with two-dimensional Navier-Stokes equation system. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft wind tunnel is made to validate the present computational results. The results show that the oscillations of the condensation shock wave are completely suppressed by the current passive control method.

Condensation processes in transonic two-phase flows of saturated humid air using a small-disturbance model (미교란 모델을 이용한 포화 습공기 천음속 2상 유동에서의 응축현상)

  • Lee, Jang-Chang;Zvi Rusak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.23-29
    • /
    • 2003
  • Transonic two-phase flow of Saturated humid air, in which relative humidity is 100%, with various condensation processes around thin airfoils is investigated. The study uses an extended transonic small-disturbance(TSD) model of Rusak and Lee [11, 12] which includes effects of heat addition to the flow due to condensation. Two possible limit types of condensation processes are considered. In the nonequilibrium and homogeneous process, the condensate mass fraction is calculated according to classical nucleation and droplet growth rate models. In the equilibrium process, the condensate mass fraction is calculated by assuming an isentropic process. The flow and condensation equations are solved numerical1y by iterative computations. Results under same upstream conditions describe the flow structure, field of condensate, and pressure distribution on airfoil's surfaces. It is found that flow characteristics, such as position and strength of shock waves and airfoil’s pressure distribution, are different for the two condensation processes. Yet, in each case, heat addition as a result of condensation causes significant changes in flow behavior and affects the aerodynamic performance of airfoils.

Numerical Study on the Effect of Non-Equilibrium Condensation on Drag Divergence Mach Number in a Transonic Moist Air Flow (천음속 익형 유동에서 비평형 응축이 Drag Divergence Mach Number에 미치는 영향에 관한 수치 해석적 연구)

  • Choi, Seung Min;Kang, Hui Bo;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.785-792
    • /
    • 2016
  • In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same ${\alpha}$, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in ${\Phi}_0$. For the same $M_{\infty}$, ${\Phi}_0$, and $T_0$, the length of the non-equilibrium condensation zone ${\Delta}_z$ decreases with increasing ${\Phi}_0$. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient $C_D$ decreases with an increase in ${\Phi}_0$ for the same $M_{\infty}$ and ${\alpha}$. For the same ${\alpha}$, $M_D$ increases with increasing ${\Phi}_0$, while $M_D$ decreases with an increase in ${\alpha}$.

A Numerical Study of the Effect of Non-equilibrium Condensation on the Oscillation of Shock Wave in a Transonic Airfoil Flow (비평형 응축이 충격파 진동에 미치는 영향에 관한 수치 해석적 연구)

  • Jeon, Heung Kyun;Kim, In Won;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.219-225
    • /
    • 2014
  • In this study, to find the characteristics of the oscillation of a terminating shock wave in a transonic airfoil flow with non-equilibrium condensation, a NACA00-12,14,15 airfoil flow with non-equilibrium condensation is investigated through numerical analysis of TVD scheme. Transonic free stream Mach number of 0.81-0.90 with the variation of stagnation relative humidity and airfoil thickness is tested. For the free stream Mach number 0.87 and attack angle of ${\alpha}=0^{\circ}$, the increase in stagnation relative humidity attenuates the strength of the terminating shock wave and inactivates the oscillation of the terminating shock wave. For the case of $M_{\infty}=0.87$ and ${\phi}_0=60%$, the decreasing rate in the frequency of the shock oscillation caused by non-equilibrium condensation to that of ${\phi}_0=30%$ amounts to 5%. Also, as the stagnation relative humidity gets larger, the maximum coefficient of drag and the difference between the maximum and minimum in $C_D$ become smaller. On the other hand, as the thickness of the airfoil gets larger, the supersonic bubble size becomes bigger and the oscillation of the shock wave becomes higher.

A Study on the Onset of Condensation in a Supersonic Nozzle of Constant Expansion Rate (팽창율이 일정한 초음속 노즐흐름의 응축개시에 관한 연구)

  • 김병지;권순범;이은수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.463-469
    • /
    • 1990
  • A rapid expansion of moist air of condensible gas through a supersonic nozzle gives rise to condensation of nonequilibrium and equilibrium processes. Because most of the effects of condensation on the flow are caused by process of nonequilibrium condensation, it is very important to know the onset. condition of nonequilibrium condensation. In the present study, the relation between the initial relative stagnation humidity and the onset Mach number, for the case of the similarity law suggested by Zierep and Lin. Furthermore, the present theoretical result number is compared with the experimental, numerical and other results.

ANALYSIS ON STEAM CONDENSING FLOW USING NON-EQUILIBRIUM WET-STEAM MODEL (비평형 습증기 모델을 적용한 증기 응축 유동 해석)

  • Kim, C.H.;Park, J.H.;Ko, D.G.;Kim, D.I.;Kim, Y.S.;Baek, J.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • When the steam is used as working fluid in fluid machinery, different from other gases as air, phase transition (steam condensation) can occur and it affects not only the flow fields, but also machine performance & efficiency. Therefore, considering phase transition phenomena in CFD calculation is required to achieve accurate prediction of steam flow and non-equilibrium wet-steam model is needed to simulate realistic steam condensing flow. In this research, non-equilibrium wet-steam model is implemented on in-house code(T-Flow), the flow fields including phase transition phenomena in convergent-divergent nozzle are studied and compared to results of advance researches.

Study of Moist Air Flow Through the Ludwieg Tube

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong;Toshiaki Setoguchi;Sigeru Matsuo;Raghu S. Raghunathan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2066-2077
    • /
    • 2003
  • The time-dependent behavior of unsteady condensation of moist air through the Ludwieg tube is investigated by using a computational fluid dynamics (CFD) work. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme, with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The predicted results are compared with the previous experiments using the Ludwieg tube with a diaphragm downstream. The present computations represent the experimental flows well. The time-dependent unsteady condensation characteristics are discussed based upon the present predicted results. The results obtained clearly show that for an initial relative humidity below 30% there is no periodic oscillation of the condensation shock wave, but for an initial relative humidity over 40% the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to unsteady condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity and it results from the periodic excursions of the condensation shock wave.

Effect of Non-Equilibrium Condensation on Force Coefficients in Transonic Airfoil Flow (천음속 에어포일 유동에서 비평형 응축이 Force Coefficients 에 미치는 영향)

  • Jeon, Heung Kyun;Choi, Seung Min;Kang, Hui Bo;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1009-1015
    • /
    • 2014
  • The present study investigated the effects of non-equilibrium condensation with the angle of attack on the coefficients of pressure, lift, and drag in the transonic 2-D flow of NACA0012 by numerical analysis of the total variation diminishing (TVD) scheme. At $T_0=298k$ and ${\alpha}=3^{\circ}$, the lift coefficients for $M_{\infty}=0.78$ and 0.81 decreased monotonically with increasing ${\Phi}_0$. In contrast, for $M_{\infty}$ corresponding to the Mach number of the force break, $C_L$ increased with ${\Phi}_0$. For ${\alpha}=3^{\circ}$ and ${\Phi}_0=0%$, $C_D$ increased markedly as $M_{\infty}$ increased. However, at ${\Phi}_0=60%$ and ${\alpha}=3^{\circ}$, which corresponded to the case of the condensation having a large influence, $C_D$ increased slightly as $M_{\infty}$ increased. The decrease in profile drag by non-equilibrium condensation grew as the angle of attack and stagnation relative humidity increased for the same free stream transonic Mach number. At ${\Phi}_0=0%$, the coefficient of the wave drag increased with the attack angle and free stream Mach number. When ${\Phi}_0$ > 50%, the coefficient of the wave drag decreased as ${\alpha}$ and $M_{\infty}$ increased. Lowering ${\Phi}_0$ and increasing $M_{\infty}$ increased the maximum Mach number.