• Title/Summary/Keyword: Equilibrium composition

Search Result 227, Processing Time 0.03 seconds

Kinetic Analysis of Diffusion Aluminide Coating (확산 알루미나이드 코팅의 속도론적 해석)

  • 손희식;김문일
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.152-163
    • /
    • 1995
  • A theoretical model which combines gaseous transport and solid state diffusion with the multi-component equilibrium at the gas/pack and gas/coating interfaces was used to study the kinetics of diffusion aluminide coating. The diffusion aluminide coatings were applied by pack cementation with Ni substrate under argon atmosphere in the high activity and the low activity pack containing $NH_4CL$ or $AlF_3$ activator. On the basis of the process conditions, the suggested model allows the surface composition, the growth rate of coating layers and the aluminium concentration profiles in coatings to be calculated. In the case of $NH_4$Cl activator, careful consideration was required in the analysis, because activator contains nitrogen and hydrogen as well as halogen element to activate the pack. A good agreement is obtained between the theoretical predictions and the experimental results.

  • PDF

Synthesis of Nano Metal Powder by Electrochemical Reduction of Iron Oxides

  • Seong, Ki-Hun;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.482-483
    • /
    • 2006
  • Synthesis of iron nanopowder by room-temperature electrochemical reduction process of ${\alpha}-Fe_2O_3$ nanopowder was investigated in terms of phase evolution and microstructure. As process variables, reduction time and applied voltage were changed in the range of $1{\sim}20$ h and $30{\sim}40$ V, respectively. From XRD analyses, it was found that volume of Fe phase increased with increasing reduction time and applied voltage, respectively. The crystallite size of Fe phase in all powder samples was less than 30 nm, implying that particle growth was inhibited by the reaction at room temperature. Based on the distinct equilibrium shape of crystalline particle, phase composition of nanoparticles was identified by TEM observation.

  • PDF

Adsorption Characteristics of Endo Ⅱ and Exo Ⅱ Purified from Trichoderma viride on Microcrystalline Celluloses with Different Surface Area

  • 김동원;정영규;장영훈;이재국
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.498-503
    • /
    • 1995
  • The adsorption behaviors of two major components purified, endo Ⅱ and exo Ⅱ, from Trichoderma viride were investigated using microcrystalline cellulose with different specific surface area as substrates. Adsorption was found to apparently obey the Langmuir isotherm and the thermodynamic parameters, ΔH, ΔS, and ΔG, were calculated from adsorption equilibrium constant,K. The adsorption process was found to be endothermic and an adsorption entropy-controlled reaction. The amount of adsorption of cellulase components increased with specific surface area and decreased with temperature and varied with a change in composition of the cellulase components. The maximum synergistic degradation occurred at the specific weight ratio of the cellulase components at which the maximum affinity of cellulase components obtains. The adsorption entropy and enthalpy for respective enzyme system increased with specific surface area increase. The adsorption entropy was shown to have a larger value with enzyme mixture.

Bubble-Point Measurement of Binary Mixture for the CO2 + Caprolactone Acrylate System in High Pressure

  • Jeong, Jong-Dae;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.826-831
    • /
    • 2019
  • Experimental data of phase equilibrium is reported for caprolactone acrylate in supercritical carbon dioxide. Bubble-point data was measured by synthetic method at temperatures ranging from (313.2 to 393.2) K and pressures up to 55.93 MPa. In this research, the solubility of carbon dioxide for the (carbon dioxide + caprolactone acrylate) system decreases as temperature increases at a constant pressure. The (carbon dioxide + caprolactone acrylate) system exhibits type-I phase behavior. The experimental result for the (carbon dioxide + caprolactone acrylate) system was correlated with Peng-Robinson equation of state using mixing rule. The critical property of caprolactone acrylate was predicted with the Joback and Lyderson method.

A Comparative Experiment on the Hydrate Structures I and II for the Solid Transportation of Natural Gas (천연가스 고체화수송을 위한 하이드레이트 구조 I과 II에 대한 비교실험)

  • 김남진;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.674-682
    • /
    • 2003
  • Natural gas hydrate typically contains 85 wt.% water and 15 wt.% natural gas, and commonly belongs to cubic structure I and II. Also, 1m$^3$ hydrate of natural gas can be decomposed to 200 m$^3$ natural gas at standard condition. If this characteristic of hydrate is reversely utilized, natural gas is fixed into water and produced to hydrate. Therefore the hydrate is great as a means to transport and store natural gas. So, the tests were performed on the formation of natural gas hydrate is governed by the pressure, temperature, gas composition etc. The results show that the equilibrium pressure of structure II is approximately 65% lower and the solubility is about 3 times higher than structure I. Also if the subcoolings of structure I and structure II are more than 9 K and 11 K respectively, the hydrates are rapidly formed.

Geochemical Modeling of U Solubility in Groundwater Conditions (지하수에서의 우라늄 용해도에 대한 지화학적 모델링 연구)

  • Cho, Young-Hwan;Han, Kyung-Won;Suh, In-Suk
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 1990
  • Uranium solubilities have been calculated for a range of conditions expected in a nuclear waste disposal repository. Variables taken into consideration include the pH and Eh range expected for deep groundeaters, the effect of the composition of groundwater. The model used in these calculations is based on the assumption of chemical equilibrium. Calculations show that the major variables influencing uranium solubility under the repository conditions are pH and Eh. The results of this study can be applied to an assessment of the nuclear waste disposal.

  • PDF

Separation of Optical Isomers of Amino Acids with Addition of Benzyl-L-proline Copper (II) Chelate by Reversed Phase Liquid Chromatography

  • Lee, Sun-Haing;Oh, Dae-Sub;Kim, Byoung-Eog
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.341-345
    • /
    • 1988
  • Separation of optical isomers of dansyl amino acids by a reversed phase liquid chromatography has been accomplished by adding a copper (II) chelate of N-benzyl-L-proline to the mobile phase. The pH, the eluent composition and the concentration of copper (II) chelate all affect the optical separations. The elution orders between D and L DNS-amino acids were consistant except dansyl phenylalanine showing that D forms of DNS-amino acids elute earlier than L forms. These behaviors are different from the results obtained by the use of copper (II) proline. The retention mechanism for the optical separation of the dansyl amino acids can be explained by the equilibrium of liqand exchange and by hydrophobic interaction.

Investigation of Factors for Promoting Densification of the Sintered Compact during Pressurized Sintering of the Amorphous Ti5Si3 MA Powder (비정질상인 Ti5Si3 MA분말의 가압소결 동안 소결체의 치밀화 촉진현상 요인에 대한 조사)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.6
    • /
    • pp.301-307
    • /
    • 2020
  • In this study, factors considered to be causes of promotion of densification of sintered pellets identified during phase change are reviewed. As a result, conclusions shown below are obtained for each factor. In order for MA powder to soften, a temperature of 1,000 K or higher is required. In order to confirm the temporary increase in density throughout the sintered pellet, the temperature rise due to heat during phase change was found not to have a significant effect. While examining the thermal expansion using the compressed powder, which stopped densification at a temperature below the MA powder itself, and the phase change temperature, no shrinkage phenomenon contributing to the promotion of densification is observed. The two types of powder made of Ti-silicide through heat treatment are densified only in the high temperature region of 1,000 K or more; it can be estimated that this is the effect of fine grain superplasticity. In the densification of the amorphous powder, the dependence of sintering pressure and the rate of temperature increase are shown. It is thought that the specific densification behavior identified during the phase change of the Ti-37.5 mol.%Si composition MA powder reviewed in this study is the result of the acceleration of the powder deformation by the phase change from non-equilibrium phase to equilibrium phase.

Estimation of Thermodynamic Properties of Refrigerant Mixtures Using a Modified Carnaha-Starling Equation of State (수정된 Carnahan-Starling 상태방정식을 이용한 혼합냉매의 물성계산)

  • 김민수;김동섭;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2189-2205
    • /
    • 1991
  • Thermodynamic properties of binary nonazeotropic refrigerant mixtures are estimated by using a modified Carnhan-Starling equation of state. In this study, pure component refrigerants such as R14, R23, R13, R13 B1, R22, R12, R134a, R152a, R142b, RC318, R114, R11, R123 and R113 are chosen and the thermodynamic properties of enthalpy and entropy are calculated in terms of relevant variables. The modified Carnahan-Starling equation of state is compared with the carnahan-Staring-De Santis equation of sate. Results show that the relative errors become slightly smaller with the equation of state proposed in this study. Correlations are obtained for the mixtures of which the vapor liquid equilibruim data are available to us in the literature. Those mixtures are R14/R23, R23/R12, R13/R12, R13/R11, R13B1/R22, R13B1/RC318, R12/RC138, R12/R114 and R12/R11. The binary interaction coefficients are found under the condition of minimizing the pressure deviations at the vapor liquid equiblibrium state and the estimation of the vapor liquid equilibrium for the refrigerant mixtures is done. Pressure-enthalpy and temperature-entropy diagrams are plotted for the refrigerant mixtures of specific composition.

Numerical Modeling of Anodic Reaction of Carbon-Rich Fuel at Solid Oxide Fuel Cell (탄소연료를 이용하는 고체 산화물 연료전지의 연료극 반응 수치해석)

  • Lim, Ho;Kim, Jong-Pil;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.188-194
    • /
    • 2010
  • Direct Carbon Fuel Cell(DCFC), unlike gas turbines or engines, is a kind of fuel cell which directly generates electricity by electrochemical reaction from a carbon fuel. The advantages of DCFC are higher efficiency and lower emission in comparison with existing power generation facilities. In this study, the effects of CO and $CO_2$ on theoretical potential are examined using the thermodynamic equilibrium method, and the dependence of product on operating temperature is examined via two dimensional CFD method. As a result, when the reaction of CO production (Boudouard reaction) considered, theoretical potential is higher than that in only $CO_2$ reactions, and its value increases as temperature increases. Two dimensional results of computational fluid dynamics(CFD) confirm that the Boudouard reaction becomes more important to be considered as temperature increases and inert gas affects the equilibrium composition of the Boudouard reaction.