• Title/Summary/Keyword: Equilibrium calculations

Search Result 146, Processing Time 0.023 seconds

Electronic Structure Calculations for ArCO$_2\;^+$ and ArCO$_2$

  • Hwang, Woong-Lin;Lee, Yoon-Sup;Kim, Ja-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.153-156
    • /
    • 1988
  • Ab initio calculations are performed for $ArCO_2^+$ and $ArCO_2$. Between the two configurations of $ArCO_2^+$ the orbital interactions and the higher order correlation calculations favor the T-shape, and their interaction energies are calculated to be approximately half the experimental values using 6-31G$^{\ast}$ basis set. In $ArCO_2$, the calculations qualitatively favor the T-structure, which is compatible with the experiment. However, the true interaction energy is obscured since it is within the BSSE limit at this basis set size and the correlation level. Addition of sp type diffuse functions increase the interaction energies by a considerable amount, but the BSSE estimated by CP method are responsible for the significant portion of the difference. The possible equilibrium structure of the $Ar^+-CO_2$ complex, where the charge is localized on Ar, is suggested as having a linear structure. The potential energy surface and the amount of charge transfer are shown to be sensitive to the type and balancing of basis set.

Numerical Analysis of River Bed Change Due to Reservoir Failure Using CCHE1D Model (CCHE1D 모형을 이용한 저수지 붕괴에 따른 하상변동 해석)

  • Son, In Ho;Kim, Byunghyun;Son, Ah Long;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.219-229
    • /
    • 2016
  • This study presents the analysis of flood and bed deformation caused by reservoir failure. The CCHE1D is used to simulate 1D non-uniform, non-equilibrium sediment transport and bed deformation. The CCHE1D deals with the adaptation length for non-equilibrium sediment, classified sediment particle for non-uniform sediment and mixing layer for the exchange with the sediment moving with the flow. The model is applied to Ha!Ha! river basin where was experienced reservoir failure in 1996 to analyze non-uniform and non-equilibrium sediment transport. The calculations are compared with morphological bed changes of pre- and post-flood. In addition, model sensitivity to main parameters involving adaptation length ($L_{s,b}$), non-equilibrium coefficient (${\alpha}_s$), mixing layer thickness (${\delta}_m$) and porosity (p') is analyzed. The results indicates that thalweg change is the most sensitive to non-equilibrium coefficient (${\alpha}_s$) among those parameters in the study area.

Explanation of the Effect of Limestone on the Dissolution of a Phosphate with the Visual MINTEQ Model (Visual MINTEQ모델을 이용한 인산염의 용해에 미치는 석회석의 영향 규명)

  • Kim, Hag Seong;Jeong, Yeon Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.285-290
    • /
    • 2008
  • This study was done to explain the role of limestone which might intervene in the phosphorus cycle in a lake. The effects of limestone on the dissolution of phosphate were estimated by simulations with the computer model Visual MINTEQ, which is designed for the chemical equilibrium calculations. According to the calculations limestone shows remarkable effects for the suppression of phosphate dissolution. The limestone can suppress the dissolution of phosphates by sacrificing themselves to acids, and as a consequence can increase the hardness and alkalinity of the lake. Both hardness and alkalinity play an important role in reducing soluble P and thus alleviate the eutrophication potential.

Slope Stability Analysis of Filldams by Modified Seismic Intensity Method (수정진도법에 의한 댐사면 안정해석)

  • 신동훈;이종욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.223-228
    • /
    • 2000
  • The current slope stability analysis of a filldam is based on the limit equilibrium method, and in calculation of safety factor during earthquake, adopts the seismic intensity method in which it considers a uniform seismic force from dam foundation to crest. However the observed behaviour of filldam during earthquake shows some different behaviour in that at the crest the measured acceleration is usually several times the ground acceleration. In this study, slope stability calculations of a filldam are provided based on the modified seismic intensity method, which can take into account the amplification phenomena of acceleration in the upper part of dam. And also the results of calculations are compared with that of current seismic intensity method.

  • PDF

Decarbonylation of the 2-Hydroxypyridine Radical Cation: A Computational Study

  • Choe, Joong Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3021-3024
    • /
    • 2014
  • The potential energy surface (PES) for the dissociation of the 2-hydroxypyridine (2-HP) radical cation was determined from G3//B3LYP calculations, including the loss of CO, HCN, and HNC. The formation of the 1H-pyrrole radical cation by decarbonylation through a more stable tautomer, the 2-pyridone (2-PY) radical cation, was the most favorable dissociation pathway. Kinetic analysis by the Rice-Ramsperger-Kassel-Marcus model calculations was carried out based on the obtained PES. It is proposed that the dissociation occurs after a rapid tautomerization to 2-$PY^{{\cdot}+}$, and that most of the ions generated by ionization of 2-HP have the structure of 2-$PY^{{\cdot}+}$ at equilibrium above the tautomerization barrier.

Metamagnetism in $Fe_3$Al Alloy

  • Rhee, Joo-Yull;Lee, Young-Pak
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.60-62
    • /
    • 2003
  • In this study we report the results of ab initio first-principles calculations to investigate the possibility of metamagnetic behavior in Fe$_3$Al alloy. We used the WIEN2k package of full-potential linearized-augmented- plane-wave method within the local-spin-density approximation to the density-functional theory. The exchange-correlation functional is the generalized-gradient approximation of Perdew-Burke-Ernzerhof. The theoretical lattice constant, which is about 0.5% smaller than the experimental one, is obtained by minimizing the total energy. If the volume decreases about 9 % from the equilibrium, the total magnetic moment decreases abruptly from 4.6 $\mu_{B}$/f.u. to 4.0 $\mu_{B}$/f.u. Since this change is considerably large (∼14%), it is possible to measure by a simple high-pressure experiment at about 180 kbar.

Geochemical Modeling of U Solubility in Groundwater Conditions (지하수에서의 우라늄 용해도에 대한 지화학적 모델링 연구)

  • Cho, Young-Hwan;Han, Kyung-Won;Suh, In-Suk
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 1990
  • Uranium solubilities have been calculated for a range of conditions expected in a nuclear waste disposal repository. Variables taken into consideration include the pH and Eh range expected for deep groundeaters, the effect of the composition of groundwater. The model used in these calculations is based on the assumption of chemical equilibrium. Calculations show that the major variables influencing uranium solubility under the repository conditions are pH and Eh. The results of this study can be applied to an assessment of the nuclear waste disposal.

  • PDF

EXPERIMENTAL AND AB INITIO CHARACTERIZATION OF THE ANHARMONICITY OF $v_s(OH)$ VIBRATION IN PHENOL DERIVATIVES

  • Boguslawa, Czarnik-Matusewicz;Rospenk, Maria;Koll, Aleksandern
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1274-1274
    • /
    • 2001
  • An anharmonicity is a fundamental quantity shaping the potential for stretching OH vibration in phenol and its derivatives. The phenomenon is examined both by experimental and theoretical methods. FT-IR and NIR spectra of series of phenols derivatives were measured in the range of fundamental and first two Overtones of $_{s}(OH)$ Vibrations in $CCl_4$ solutions. The electronic influence of substituents on the analyzed frequencies is discussed and correlated with $pK_{a}$ parameters. Ab initio MP2/6-31G(d,p) and B3LYP/6-31G(g,p) calculations of the potential for proton movement in OH group were performed. Equilibrium structures were also determined. The frequencies of fundamental and overtones were calculated by Numerov-type procedure. The results of calculations are compared with the experimental data. The best linear correlations were obtained for the results of MP2/6-31G(d,p) calculations. It was shown that some structural parameters are especially sensitive on substitution. The linear correlations were found between those parameters and spectroscopic data. The results of calculation are compared with available crystallographic data.

  • PDF

Identifuication of College Student's And Teacher's Conceptions for Chemical Equilibrium and Equilibrium Shift (화학평형과 평형이동에 대한 대학생과 교사들의 개념조사)

  • Park, Jong Yun;Park, Hyeon Ju
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.265-278
    • /
    • 2002
  • A concept test was administered to college students and teachers to identify their understanding of chemical equilibrium and equilibrium shift. The subjects were 53 freshmen in the General Chemistry class, 28 juniors in the Physical Chemistry class and 26 seniors from a university and 10 high school teachers in Seoul. Test items include the calculations of partial pressure and concentration of the gas in the mixture, the equilibrium constant cal-culation and the prediction of equilibrium shift when an inert gas is added to the gaseous reaction system, and the equilibrium concentration calculation and the prediction of equilibrium shift when water or common ion is added to the weak acid solution. The test was focused to identify whether the subjects can predict equilibrium shift using the reaction quotient change for the situations in which Le Chatelier principle is difficult to apply. The results showed that the achievements of teachers and juniors were significantly higher than those of freshmen and seniors. Many stu-dents had difficulties in predicting equilibrium shift using the reaction quotient while they could calculate partial pres-sure and concentration for the same situation. It means they are lack of conceptual understanding of chemical equilibrium shift.

Equilibrium Fractionation of Clumped Isotopes in H2O Molecule: Insights from Quantum Chemical Calculations (양자화학 계산을 이용한 H2O 분자의 Clumped 동위원소 분배특성 분석)

  • Sehyeong Roh;Sung Keun Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In this study, we explore the nature of clumped isotopes of H2O molecule using quantum chemical calculations. Particularly, we estimated the relative clumping strength between diverse isotopologues, consisting of oxygen (16O, 17O, and 18O) and hydrogen (hydrogen, deuterium, and tritium) isotopes and quantify the effect of temperature on the extent of isotope clumping. The optimized equilibrium bond lengths and the bond angles of the molecules are 0.9631-0.9633 Å and 104.59-104.62°, respectively, and show a negligible variation among the isotopologues. The calculated frequencies of the modes of H2O molecules decrease as isotope mass number increases, and show a more prominent change with varying hydrogen isotopes over those with oxygen isotopes. The equilibrium constants of isotope substitution reactions involving these isotopologues reveal a greater effect of hydrogen mass number than oxygen mass number. The calculated equilibrium constants of clumping reaction for four heavy isotopologues showed a strong correlation; particularly, the relative clumping strength of three isotopologues was 1.86 times (HT18O), 1.16 times (HT17O), and 0.703 times (HD17O) relative to HD18O, respectively. The relative clumping strength decreases with increasing temperature, and therefore, has potential for a novel paleo-temperature proxy. The current calculation results highlight the first theoretical study to establish the nature of clumped isotope fractions in H2O including 17O and tritium. The current results help to account for diverse geochemical processes in earth's surface environments. Future efforts include the calculations of isotope fractionations among various phases of H2O isotopologues with a full consideration of the effect of anharmonicity in molecular vibration.