• Title/Summary/Keyword: Equations for stress evaluation

Search Result 65, Processing Time 0.027 seconds

A Study on the Stress Evaluation Equations for Steel Circular Column-to- Box Beam Connections (강재 상자형보-원형기둥 접합부의 응력평가식에 관한 연구)

  • Park, Yong Myung;Chang, Won Je;Hwang, Won Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.505-517
    • /
    • 2004
  • This paper presented equations on the stress evaluation of steel frame pier connections that were composed of a box beam and a circular column. The existing equations, which transformed the circular column into an equivalent box column had some problems; they underestimated a shear lag stress as the joint angle decreased, and overestimated a shear stress as the joint angel increased. Therefore, FE analyses were performed with various parameters, such as joint angle(${\alpha}$), span length-width ratio(L/B), and circular column-to-box beam stiffness ratio(${\alpha}$), and new equations on stress evaluation were proposed based on FE analyses. Furthermore, material and geometric nonlinear analyses were performed to estimate ultimate strength and to confirm the validity of the proposed equations.

Development of Stress Evaluation Equation of Circular Column-Box Beam Connections (원형기둥-상자형보 접합부의 응력평가식 개발)

  • 이주혁;김정환;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.227-234
    • /
    • 2003
  • This study presents the stress evaluation equations of circular column-box beam connection in steel frame piers. FEM analysis were carried out for circular column-box beam connection. Analysis models were made for design parameters such as joint angle, span length-width ratio(L/B), sectional-area ratio(S=A/sub w/A/sub f/), and circular column-box beam stiffness ratio(Ic/Ib). Analysis results were compared to the existing equation. Based on analysis results the stress evaluation equations of circular column-box beam connection are proposed by regression analysis.

  • PDF

Evaluation of Ultimate Strength Design Equations for Stress Calculation of Unbonded Tendons (비부착 긴장재의 응력산정을 위한 극한강도 설계식의 평가)

  • 임재형;문정호;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.113-122
    • /
    • 1999
  • The present study is to investigate the possibility of overestimation or underestimation when the ACI Code equations are used to evaluate the unbonded tendon stress. An experimental program was planned with 6 beams which divided into two groups. Each group consisted of 3 beams to check the possibility of overestimation or underestimation of unbonded tendon stress. The experimental results were also compared with various design equations including the one proposed by Moon and Lim. It was proven that the ACI Code equations may overestimate or underestimate the unbonded tendon stress in certain cases.

Proposal of the Penalty Factor Equations Considering Weld Strength Over-Match

  • Kim, Jong-Sung;Jeong, Jae-Wook;Lee, Kang-Yong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.838-849
    • /
    • 2017
  • This paper proposes penalty factor equations that take into consideration the weld strength over-match given in the classified form similar to the revised equations presented in the Code Case N-779 via cyclic elastic-plastic finite element analysis. It was found that the $K_e$ analysis data reflecting elastic follow-up can be consolidated by normalizing the primary-plus-secondary stress intensity ranges excluding the nonlinear thermal stress intensity component, $S_n$ to over-match degree of yield strength, $M_F$. For the effect of over-match on $K_n{\times}K_{\nu}$, dispersion of the $K_n{\times}K_{\nu}$ analysis data can be sharply reduced by dividing total stress intensity range, excluding local thermal stresses, $S_{p-lt}$ by $M_F$. Finally, the proposed equations were applied to the weld between the safe end and the piping of a pressurizer surge nozzle in pressurized water reactors in order to calculate a cumulative usage factor. The cumulative usage factor was then compared with those derived by the previous $K_e$ factor equations. The result shows that application of the proposed equations can significantly reduce conservatism of fatigue assessment using the previous $K_e$ factor equations.

The Evaluation of Safety and Remaining Life on Fracture and Fatigue in Rail Steel (철도레일의 파괴 및 피로에 대한 안전도평가 및 잔류수명계산)

  • 박용걸
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.120-128
    • /
    • 1995
  • The fatigue failure of rail is a principal source of derailment accidents. The reduction of fatigue failures can be achieved by Intensive track maintenance and periodic safety assessments for the railway. For the safety assessments, it is required to have more accurate knowledge for fatigue behavior such as the crack initiation, propagation, crack growth rate and the remaining service life in rail. In this paper, the mean stress effects for the fatigue behavior of rail steel are studied. For this study, the fatigue test is conducted and some equations for fatigue evaluation are applied and compared. From the results, we can see that the fatigue crack growth rate is the more increased as the men stress Is the more increased, the mean stress effect is represented well by the combination of stress intensity factor range and maximum stress intensity factor and Crooker and Range's equation represented by ${\Delta}K, K_{max}$ is the best fit for fatigue evaluation and safety assessment of rail.

  • PDF

Indirect evaluation of the shear wave velocity of clays via piezocone penetration tests

  • Vinod K., Singh;Sung-Gyo, Chung;Hyeog-Jun, Kweon
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.623-635
    • /
    • 2022
  • This paper presents the re-evaluation of existing piezocone penetration test (CPTu)-based shear wave velocity (Vs) equations through their application into well-documented data obtained at nine sites in six countries. The re-evaluation indicates that the existing equations are appropriate to use for any specific soil, but not for various types of clays. Existing equations were adjusted to suit all nine clays and show that the correlations between the measured and predicted Vs values tend to improve with an increasing number of parameters in the equations. An adjusted equation, which comprises a CPTu parameter and two soil properties (i.e., effective overburden stress and void ratio) with the best correlation, can be converted into a CPTu-based equation that has two CPTu parameters and depth by considering the effect of soil cementation. Then, the developed equation was verified by application to each of the nine soils and nine other worldwide clays, in which the predicted Vs values are comparable with the measured and the stochastically simulated values. Accordingly, the newly developed CPTu-based equation, which is a time-saving and economical method and can estimate Vs indirectly for any type of naturally deposited clay, is recommended for practical applications.

Evaluation of Welding Residual Stress Characteristics of a Surge Line Elbow (밀림곡관 맞대기 용접부의 잔류응력 특성 평가)

  • Han, Chang-Gi;Chang, Yoon-Suk;Kim, Maan-Won;Lee, Kyoung-Soo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Even though a lot of efforts have been devoted to evaluate welding residual stress characteristics of nuclear components, from the view point of accuracy, there are still some arguments in application of engineering estimation schemes. In this paper, three-dimensional finite element analyses (FEA) were carried out to predict residual stress distributions in butt welds of a typical surge line piping. Mesh optimization was conducted and subsequent analysis results such as the axial and hoop stress components along the weld center line and inner wall. Moreover, alternative evaluation was conducted by using three representative equations and their results were compared to those of FEA. Thereby, key parameters affecting to temperature profiles and residual stress distributions were derived as well as an optimum engineering estimation scheme was recommended.

Comparison of Threshold Stress Intensity Factor and Fatigue Limit for Micro-crack of Offshore Structural Steel F690

  • Gu, Kyoung-Hee;Lee, Gum-Hwa;Lee, Weon-Gu;Oh, Chang-Seok;Nam, Ki-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_1
    • /
    • pp.141-148
    • /
    • 2022
  • In this paper, the evaluation equations proposed by Tange et al. and Ando et al. were used to evaluate the threshold stress intensity factor ∆KRth(s) and fatigue limit ∆𝜎Rwc, according to the small crack of offshore structural steel F690. Despite the differences in concept and shape of the two equations, the ∆KRth(s) and ∆𝜎Rwc proved completely consistent. It is possible to use these equations to evaluate the dependence of the crack length on the ∆KRth(s) and ∆𝜎Rwc of structures made of all steel grades. With these equations, the characteristics of microcracks can be quantitatively evaluated, and the safety and reliability of the structure can be secured.

Non-equibiaxial residual stress evaluation methodology using simulated indentation behavior and machine learning

  • Seongin Moon;Minjae Choi;Seokmin Hong;Sung-Woo Kim;Minho Yoon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1347-1356
    • /
    • 2024
  • Measuring the residual stress in the components in nuclear power plants is crucial to their safety evaluation. The instrumented indentation technique is a minimally invasive approach that can be conveniently used to determine the residual stress in structural materials in service. Because the indentation behavior of a structure with residual stresses is closely related to the elastic-plastic behavior of the indented material, an accurate understanding of the elastic-plastic behavior of the material is essential for evaluation of the residual stresses in the structures. However, due to the analytical problems associated with solving the elastic-plastic behavior, empirical equations with limited applicability have been used. In the present study, the impact of the non-equibiaxial residual stress state on indentation behavior was investigated using finite element analysis. In addition, a new nonequibiaxial residual-stress prediction methodology is proposed using a convolutional neural network, and the performance was validated. A more accurate residual-stress measurement will be possible by applying the proposed residual-stress prediction methodology in the future.

Fatigue Life Prediction of Circular Notched CFRP Laminates (원공조치를 가진 탄소섬유강화 플라스틱 적층판의 피로수명에측)

  • Heo, Jae-Seok;Hwang, Un-Bong;Park, Hyeon-Cheol;Han, Gyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.832-842
    • /
    • 1996
  • Fatigue life prediction and fatigue behavior of circular notched carbon fiber reinforced plastic laminates are presented. Point and average stress criteria by Whitney and Nuismer are generalized to fatigue fracture criteria for notched laminates. Residual strength degradation model and the assumptions on the stress redistribution are introduced during the derivation of prediction equations. S-N curve, Basquin's relation, and H and H's FLPE1 are chosen for evaluation of residual strength of unnotched laminates and six prediction equations are derived. Experiments are performed using Graphite/Epoxy laminates whose fiber orientation is $[0$^\circ$/+45$^\circ$/-45$^\circ$/90$^\circ$]s. Presented prediction equations are reasonably close to experimental data and proposed appoach is found to be suitable to predict fatigue life of notched composite laminates.