• Title/Summary/Keyword: Equation of plane

Search Result 749, Processing Time 0.027 seconds

Nonlinear Motion Responses for A Moored Ship beside Quay (안벽에 계류된 선박에 대한 비선형 운동응답)

  • Lee, Ho-Yooung;Lim, Choon-Gyu;Lew, Jae-Moon;Chun, In-Sik
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.172-178
    • /
    • 2003
  • As a typoon gets into harbour, a moored ships shows erratic motions and even mooring line failures is occurred. Such troubles may be caused by harbour resonance phenomena, result in large motion amplitudes at law frequency, which is closed to the natural frequency of the moored ship. The nonlinear motions of a moored ship beside quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from emperical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

  • PDF

A Behaviour Analysis on Clayey Ground and Steel Sheet Piles Subjected to Unsymmetrical Surcharges (편재하중을 받는 점토지반과 강널말뚝의 거동해석)

  • Lee, Moon Soo;Lee, Byoung Koo;Jeong, Jin Seob;Kim, Chan Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.977-988
    • /
    • 1994
  • In this paper, the comparisons between field measurments and numerical results ware performed for the settlements, lateral displacement in Jinwol interchange works on the Honam express way whose site was improved by sand drain for the constructions of over bridges, piers and abutments. The computer program was developed by coupling Biot's equation with Sekiguchi's elasto-viscoplastic model under plane strain conditions. Steel pipe piles for piers were replaced into the equivalent steel sheet pile wall. The characteristics of behavior for both the soil foundations and the sheet piles wall were investigated with the variation of axial force on the wall, rigidity of the wall, supported condition of sheet pile into hard strata and the location of anchored point.

  • PDF

Numerical Analysis of a Crack in the Vicinity of an Inclusion (함유체에 인접한 크랙에 관한 수치해석)

  • 이정기;라원석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.465-474
    • /
    • 1999
  • A recently developed numerical method based on a volume integral formulation is applied to calculate the accurate stress intensity factors at the crack tips in unbounded isotropic solids in the presence of multiple anisotropic inclusions and cracks subject to external loads. In this paper, a detailed analysis of the stress intensity factors are carried out for an unbounded isotropic matrix containing an orthotropic cylindrical inclusion and a crack. The accuracy and effectiveness of the new method are examined through comparison with results obtained from analytical method and finite element method using ANSYS. It is demonstrated that this new method is very accurate and effective for solving plane elastostatic problems in unbounded solids containing anisotropic inclusions and cracks.

  • PDF

Slow Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 저주파수 운동 해석)

  • 이호영;박종환;곽영기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.195-201
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizontal plane motions such as surge, sway and yaw. The added mass, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from three-dimensional panel method in the frequency domain. The mooring lines are modeled as quasi-static catenary cable. As a numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

Approximate Solution for In-Plane Elastic Buckling of Shallow Parabolic Arches (낮은 포물선 아치의 탄성 면내좌굴에 관한 근사식)

  • Moon, Ji Ho;Yoon, Ki Yong;Yi, Jong Won;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.427-436
    • /
    • 2006
  • The classical buckling theory assumes that prebuckling behavior is linear and that the effect of prebuckling deformations on buckling can be ignored. However, when the rise to span ratio decreases, prebuckling deformation cannot be ignored and the symetrical buckling strength can be smaler than the asymetrical buckling strength. Finally, arches can fail due to snap-through buckling. This paper investigates the non-linear behavior and strength of pin-ended parabolic shallow arches using the non-linear governing differential equation of shallow arches. These results were compared with the solution for the symmetrical buckling load of pin-ended parabolic shallow arches was suggested.

STABLE APPROXIMATION OF THE HEAT FLUX IN AN INVERSE HEAT CONDUCTION PROBLEM

  • Alem, Leila;Chorfi, Lahcene
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.1025-1037
    • /
    • 2018
  • We consider an ill-posed problem for the heat equation $u_{xx}=u_t$ in the quarter plane {x > 0, t > 0}. We propose a new method to compute the heat flux $h(t)=u_x(1,t)$ from the boundary temperature g(t) = u(1, t). The operator $g{\mapsto}h=Hg$ is unbounded in $L^2({\mathbb{R}})$, so we approximate h(t) by $h_{\delta}(t)=u_x(1+{\delta},\;t)$, ${\delta}{\rightarrow}0$. When noise is present, the data is $g_{\epsilon}$ leading to a corresponding heat $h_{{\delta},{\epsilon}}$. We obtain an estimate of the error ${\parallel}h-h_{{\delta},{\epsilon}}{\parallel}$, as well as the error when $h_{{\delta},{\epsilon}}$ is approximated by the trapezoidal rule. With an a priori choice rule ${\delta}={\delta}({\epsilon})$ and ${\tau}={\tau}({\epsilon})$, the step size of the trapezoidal rule, the main theorem gives the error of the heat flux as a function of noise level ${\epsilon}$. Numerical examples show that the proposed method is effective and stable.

Chaotic Behavior of 2-Dimensional Airfoil in Incompressible Flow (비압축성 유동장내 2차원 익형의 혼돈거동)

  • 정성원;이동기;이상환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.495-508
    • /
    • 1995
  • The self-excited vibrations of airfoil is related to the classical flutter problems, and it has been studied as a system with linear stiffness and small damping. However, since the actual aircraft wing and the many mechanical elements of airfoil type have various design variables and parameters, some of these could have strong nonlinearities, and the nonlinearities could be unexpectedly strong as the parameters vary. This abrupt chaotic behavior undergoes ordered routes, and the behaviors after these routes are uncontrollable and unexpectable since it is extremely sensitive to initial conditions. In order to study the chaotic behavior of the system, three parameters are considered, i.e., free-stream velocity, elastic distance and zero-lift angle. If the chaotic parameter region can be identified from the mathematically modeled nonlinear differential equation system, the designs which avoid chaotic regions could be suggested. In this study, by using recently developed dynamically system methods, and chaotic regions on the parameter plane will be found and the safe design variables will be suggested.

Theory of Acoustic Propagation in 3 Dimensional Wedge Domain (3차원 쐐기형 영역에서의 음향파 전달 이론)

  • Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.83-91
    • /
    • 1994
  • Three components contribute to the acoustic field propagating in a wedge or over a ridge : a direct path arrival, an image component due to reflection from the boundaries and a component diffracted by the apex. All three contributions are included in a new, exact solution of the Helmholtz equation for the three-dimensional time harmonic field from a point source in a wedge(or over a ridge) formed by two intersecting, pressure-release plane boundaries. The solution is obtained by applying three integral transforms, and consists of and infinite sum of uncoupled normal nodes. The mode coefficients are given by a finite integral involving a Gegenbauer polynomial in the integrand, which may be computed relatively efficiently. Results of the theory for propagation over a 90 degree ridge is discussed.

  • PDF

Vertical Buoyant Jet in Tidal Water-Stagnant Environment (조석(潮汐)의 영향을 받는 수역(水域)에서 연직상향부력(鉛直上向浮力)? -정지수역(靜止水域)-)

  • Yoon, Tae Hoon;Cha, Young Kee;Kim, Chang Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.93-101
    • /
    • 1986
  • The behavior of a plane buoyant jet discharged vertically upward into a stagnant uniform environment is analyzed by continuity, momentum transport equation by numerical scheme. The governing equations are solved by finite difference method employing stream function and vorticity transport and Prandtl's turbulent model. Results for centerline velocities and temperatures, temperature distribution and flow pattern in receiving environment due to buoyant jet in the range of discharge densimetric Froude number of 4 to 32 show good agreement with published data. Spreading rate and dispersion ratio, which are required in integral type analysis of whole range of buoyant jet and have not been obtained yet, are derived in terms of discharge densimetric Froude number and vertical distance from source.

  • PDF

Analysis of Induced Currents on the Dielectric Cube by the Fusion of MoM and PMCHW Integral Equation (MoM과 PMCHW 적분방정식 융합에 의한 유전체 육면체의 유도전류 계산)

  • Lim, Joong-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.9-14
    • /
    • 2015
  • In this paper, we analysis the electromagnetic scattering of an arbitrary shape dielectric cube subjected to plane wave incidence in three dimensions. MoM(Method of Moments)in which a surface of a body is divided with small triangular patches and equivalence principle are used to fuse the PMCHW(Poggio, Miller, Chang, Harrington, and Wu) Integral Equations with respect to equivalent currents on a dielectric body. Triangular patch and loop-patch basis functions that is robust in wide frequency ranges are used for MoM formulations. Proposed method is very useful to analysis the induced current of arbitrary dielectric bodies and numerical results for a dielectric cube are presented.