• Title/Summary/Keyword: Equation of plane

Search Result 749, Processing Time 0.024 seconds

Defect Length Measurement using Underwater Camera and A Laser Slit Beam

  • Kim, Young-Hwan;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.746-751
    • /
    • 2003
  • A method of measuring the length of defects on the wall of the spent nuclear fuel pool using the image processing and a laser slit beam is proposed. Since the defect monitoring camera is suspended by a crane and hinged to the crane hook, the camera viewing direction can not be adjusted to the orientation that is exactly perpendicular to the wall. Thus, the image taken by the camera, which is horizontally rotated along the axis of the camera supporting beam, is distorted and thus, the precise length can not be measured. In this paper, by using the LASER slit beam generator, the horizontally rotated angle of the camera is estimated. Once the angle is obtained, the distorted image can be easily reconstructed to the image normal to the wall. The estimation algorithm adopts a 3-dimensional coordinate transformation of the image plane where both the laser slit beam and the original image of the defects exist. The estimation equation is obtained by using the information of the beam projected on the wall and the parameters of this equation are experimentally obtained. With this algorithm, the original image of the defect taken at arbitrary rotated angle can be reconstructed to an image normal to the wall. From the result of a series of experiments, the accuracy of the defect is measured within 0.6 and 1.3 % error bound of real defect size in the air and underwater, respectively under 30 degree of the inclined angle of the laser slit beam generator. Also, the error increases as the inclined angle increases upto 60 degree. Over this angle, the defect length can not be measured since the defect image disappears. The proposed algorithm enables the accurate measurement of the defect length only by using a single camera and a laser slit beam.

  • PDF

The geometry of Sulbasu${\={u}}$tras in Ancient India (고대 인도와 술바수트라스 기하학)

  • Kim, Jong-Myung;Heo, Hae-Ja
    • Journal for History of Mathematics
    • /
    • v.24 no.1
    • /
    • pp.15-29
    • /
    • 2011
  • This study was carrying out research on the geometry of Sulbas${\={u}}$tras as parts of looking for historical roots of oriental mathematics, The Sulbas${\={u}}$tras(rope's rules), a collection of Hindu religious documents, was written between Vedic period(BC 1500~600). The geometry of Sulbas${\={u}}$tras in ancient India was studied to construct or design for sacrificial rite and fire altars. The Sulbas${\={u}}$tras contains not only geometrical contents such as simple statement of plane figures, geometrical constructions for combination and transformation of areas, but also algebraic contents such as Pythagoras theorem and Pythagorean triples, irrational number, simultaneous indeterminate equation and so on. This paper examined the key features of the geometry of Sulbas${\={u}}$tras and the geometry of Sulbas${\={u}}$tras for the construction of the sacrificial rite and the fire altars. Also, in this study we compared geometry developments in ancient India with one of the other ancient civilizations.

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.

Underwater Hybrid Navigation System Based on an Inertial Sensor and a Doppler Velocity Log Using Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 시스템)

  • Lee, Chong-Moo;Lee, Pan-Mook;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.149-156
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o.f. equations of motion of SAUV in a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass and a depth senor. The error of the estimated position still slowly drifts in horizontal plane about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

  • PDF

An Effect of Layered Earth on Magnetotelluric Responses of Three-Dimensional Bodies (3차원체의 MT응답에 미치는 층상대지의 효과)

  • Kim, Hee Joon;Hong, Chol Hoon
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.491-498
    • /
    • 1994
  • The integral equation method is used for magnetotelluric (MT) modeling of a finite inhomogeneity in a two-layered earth. An integral equation relates the incident plane-wave field and the scattering currents in the three-dimensional (3-D) inhomogeneity through the electric tensor Green's function appropriate to a layered earth. This paper describes an effect of overburden and basement on MT responses of 3-D body. The effect of overburden is to reduce the detectability of target, and the reduction of detectability is more apparent for conductive overburden than for resistive one. The effect of basement, on the other hand, may enhance the anomaly due to 3-D body in the upper layer. In case of the resistive basement current perturbations about the body tend to be confined to the more conductive upper layer.

  • PDF

Constant score in asymptomatic shoulders varies with different demographic populations: derivation of adjusted score equation

  • Nitesh Gahlot;Ankit Rai;Jeshwanth Netaji
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.4
    • /
    • pp.274-281
    • /
    • 2022
  • Background: In the present study, the age- and sex-adjusted Constant score (CS) in a normal Indian population was calculated and any differences with other population cohorts assessed. Methods: The study participants were patients who visited the outpatient department for problems other than shoulder and healthy volunteers from the local population. Patients without shoulder pain/discomfort during activity were included in the study. Subjects with any problem that might affect shoulder function (e.g., cervical, thoracic spine, rib cage deformity, inflammatory arthritis) were excluded. Constant scoring of all participants was performed by trained senior residents under the supervision of the senior faculty. Shoulder range of movement and strength were measured following recommendations given by the research and Development Committee of the European Society for Shoulder and Elbow Surgery (2008). A fixed spring balance was used for strength measurement; one end was fixed on the floor and the other end tied with a strap to the wrist of the participant, arm in 90° abduction in scapular plane with palm facing down. Results: Among the 248 subjects (496 shoulders), the average age was 37 years (range, 18-78 years), 65.7% were males (326 shoulders) and 34.3% females (170 shoulders). The mean CS was 84.6±2.9 (males, 86.1±3.0; females, 81.8±2.9). CS decreased significantly after 50 years of age in males and 40 years of age in females (p<0.05). The mean CS was lower than in previous studies for both males and females. Heavy occupation workers had higher mean CS (p<0.05). A linear standardized equation was estimated for calculating the adjusted CS for any age. Conclusions: Mean CS and its change with age differed from previous studies among various population cohorts.

Design of Lossy Matching Network for Microwave Broadband Amplifier Using the Relationship Between Gain and Reflection Coefficients (이득-반사계수 관계를 이용한 마이크로파 광대역 증폭기용 유손실 정합회로의 설계)

  • Koo, Kyung-Heon;Lee, Choong-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.10-17
    • /
    • 1989
  • A new design method of lossy matching network for the microwave broadband ampilfier is presented by using seattering parameters instead od modeling of transistor. A lossy matching network is represented as the combination of 2 lossless networks between which lossy serial or parallel immittance is inserted without using specific topology, and so many useful matching cireuits can be realized. Also it is shown that linear transforming relation exists between gain and reflection coefficient of the amplifier, and the transforming equation is derived using scattering parameters. With this equation some constant gain circles can be drawn on reflection coefficient plane to get adequate reflection coefficient and gain. And since the relations between amplifier gain/reflection coefficient and the immittance of passive element are bilinear transformations. constant gain or reflection coefficients circles. Illustrative examples are presented to show the usefulness of proposed method.

  • PDF

The Numerical Analysis of the Aeroacoustic Characteristics for the Coaxial Rotor in Hovering Condition (동축반전 로터의 제자리 비행 공력소음 특성에 관한 수치 해석적 연구)

  • So, Seo-Bin;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.699-708
    • /
    • 2021
  • In this paper, the aerodynamic and aeroacoustic characteristics that vary depending on the rotation axial distance between the upper and lower rotor, which is one of the design parameters of the coaxial rotor, is analyzed in the hovering condition using the computational fluid dynamics. Aerodynamic analysis using the Reynolds Averaged Navier Stokes equation and the aeroacoustic analysis using the Ffowcs Williams ans Hawkings equation is performed and the results were compared. The upper and lower rotor of the coaxial rotor have different phase angle which changes periodically by rotation and have unsteady characteristics. As the distance between the upper and lower rotors increased, the aerodynamic efficiency of the thrust and the torque was increased as the flow interaction decreased. In the aeroacoustic viewpoint, the noise characteristics radiated in the direction of the rotational plane showed little effect by axis spacing. In the vertical downward direction of the axis increased, the SPL maintains its size as the frequency increases, which affects the increase in the OASPL. As the axial distance of the coaxial rotor increased, the noise characteristics of a coaxial rotor were similar with the single rotor and the SPL decreased significantly.

A Study on Shearing Characteristics of Joint Model (인공 절리모델에 대한 전단특성 연구)

  • 장보안;조종수
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.69-82
    • /
    • 1999
  • Direct shear tests are perfromed for artifical joint models made of cement with 25 types of different strength and roughness. The tests consist of the multi-stage test which is a common test method for a single joint plane and the test method suggested by ISRM. Then, not only the differences of friction angles between the two test methods are compared, but is the effectiveness of the multi-stage test investigated. The average of friction angles measured from the multi-stage test is $6.4^{\circ}$ lower than that from the ISRM test. Although the strength and roughness of samples vary, the differences of friction angles between the two test methods are constant. The relationship between the shear stress and the normal stress measured from the multi-stage test is well correlate with the Patton's equation. Whereas, the Barton's equation is best fitted with those measured from ISRM test.

  • PDF

Simplified Analysis and Design with Finite Element for Reinforced Concrete Shear Walls Using Limit State Equations (한계상태방정식에 의한 R/C 전단벽의 유한요소 간편 해석과 설계)

  • 박문호;조창근;이승기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.43-52
    • /
    • 2003
  • The present study is to investigate the ultimate behavior and limit state design of 2-I) R/C structures, with the changing of crack direction, and the yielding of the reinforcing steel bars, and Is to introduce an algorithm for the limit state design and analysis of 2-D R/C structures, directly from the finite element model. For the design of reinforcement in concrete the limit state design equation is incorporated into finite element algorithm to be based on the pointwise elemental ultimate behavior. It is also introduced a simplified nonlinear analysis algorithm for stress-strain relationship of R/C plane stress problem considering the cracking and its rotation in concrete and the yielding of the reinforcing steel bar. The algorithm is incorporated into the nonlinear finite element analysis. The analysis model is compared with the experimental model of R/C shear wall. In a simple design example for a shear wall, the required reinforcement ratios in each finite element is obtained from the limit state design equations.