• Title/Summary/Keyword: Equal width Discretization

Search Result 3, Processing Time 0.018 seconds

A Continuous Optimization Algorithm Using Equal Frequency Discretization Applied to a Fictitious Play (동일 빈도 이산화를 가상 경기에 적용한 연속형 최적화 알고리즘)

  • Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.8-16
    • /
    • 2013
  • In this paper, we proposed a new method for the determination of strategies that are required in a continuous optimization algorithm based on the fictitious play theory. In order to apply the fictitious play theory to continuous optimization problems, it is necessary to express continuous values of a variable in terms of discrete strategies. In this paper, we proposed a method in which all strategies contain an equal number of selected real values that are sorted in their magnitudes. For comparative analysis of the characteristics and performance of the proposed method of representing strategies with respect to the conventional method, we applied the method to the two types of benchmarking functions: separable and inseparable functions. From the experimental results, we can infer that, in the case of the separable functions, the proposed method not only outperforms but is more stable. In the case of inseparable functions, on the contrary, the performance of the optimization depends on the benchmarking functions. In particular, there is a rather strong correlation between the performance and stability regardless of the benchmarking functions.

Extraction Method of Significant Clinical Tests Based on Data Discretization and Rough Set Approximation Techniques: Application to Differential Diagnosis of Cholecystitis and Cholelithiasis Diseases (데이터 이산화와 러프 근사화 기술에 기반한 중요 임상검사항목의 추출방법: 담낭 및 담석증 질환의 감별진단에의 응용)

  • Son, Chang-Sik;Kim, Min-Soo;Seo, Suk-Tae;Cho, Yun-Kyeong;Kim, Yoon-Nyun
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.134-143
    • /
    • 2011
  • The selection of meaningful clinical tests and its reference values from a high-dimensional clinical data with imbalanced class distribution, one class is represented by a large number of examples while the other is represented by only a few, is an important issue for differential diagnosis between similar diseases, but difficult. For this purpose, this study introduces methods based on the concepts of both discernibility matrix and function in rough set theory (RST) with two discretization approaches, equal width and frequency discretization. Here these discretization approaches are used to define the reference values for clinical tests, and the discernibility matrix and function are used to extract a subset of significant clinical tests from the translated nominal attribute values. To show its applicability in the differential diagnosis problem, we have applied it to extract the significant clinical tests and its reference values between normal (N = 351) and abnormal group (N = 101) with either cholecystitis or cholelithiasis disease. In addition, we investigated not only the selected significant clinical tests and the variations of its reference values, but also the average predictive accuracies on four evaluation criteria, i.e., accuracy, sensitivity, specificity, and geometric mean, during l0-fold cross validation. From the experimental results, we confirmed that two discretization approaches based rough set approximation methods with relative frequency give better results than those with absolute frequency, in the evaluation criteria (i.e., average geometric mean). Thus it shows that the prediction model using relative frequency can be used effectively in classification and prediction problems of the clinical data with imbalanced class distribution.

Fuzzy discretization with spatial distribution of data and Its application to feature selection (데이터의 공간적 분포를 고려한 퍼지 이산화와 특징선택에의 응용)

  • Son, Chang-Sik;Shin, A-Mi;Lee, In-Hee;Park, Hee-Joon;Park, Hyoung-Seob;Kim, Yoon-Nyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 2010
  • In clinical data minig, choosing the optimal subset of features is such important, not only to reduce the computational complexity but also to improve the usefulness of the model constructed from the given data. Moreover the threshold values (i.e., cut-off points) of selected features are used in a clinical decision criteria of experts for differential diagnosis of diseases. In this paper, we propose a fuzzy discretization approach, which is evaluated by measuring the degree of separation of redundant attribute values in overlapping region, based on spatial distribution of data with continuous attributes. The weighted average of the redundant attribute values is then used to determine the threshold value for each feature and rough set theory is utilized to select a subset of relevant features from the overall features. To verify the validity of the proposed method, we compared experimental results, which applied to classification problem using 668 patients with a chief complaint of dyspnea, based on three discretization methods (i.e., equal-width, equal-frequency, and entropy-based) and proposed discretization method. From the experimental results, we confirm that the discretization methods with fuzzy partition give better results in two evaluation measures, average classification accuracy and G-mean, than those with hard partition.