• Title/Summary/Keyword: Equal angle

Search Result 252, Processing Time 0.026 seconds

Study for Woehler Fatigue Line of Steel Beam-to-Column Structure (강재 기둥-보 구조물의 피로곡선 연구)

  • Kong Byung-Seung
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.700-705
    • /
    • 2005
  • This study presents a fatigue line with a plastic rotational angle to a great extent of plastic strain of Low-Cycle-fatigue period, such as earthquake, etc. This fatigue line with a plastic rotational angle is measured and analysed more simply in practice rather than Woehler's fatigue line which is developed in stress variation of the structure. It shows that the slope of fatigue line with a plastic rotational angle is equal to that with plastic strain through the experiments by proving the correlation that the plastic strain ratio is directly proportional to the plastic rotational angle in plastic hinge.

  • PDF

Numerical Analysis on the Effect of Corrugation Angle on the Performance of Humidifying Element (절곡각에 따른 가습소자의 성능에 대한 수치해석적 연구)

  • Lee, Eul-Jong;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3051-3059
    • /
    • 2015
  • In this study, the effect of corrugation angle on thermal performance of corrugated plate is numerically investigated with an aim to develop humidifying element. Numerical analysis was conducted for a range of corrugation angle (from $0^{\circ}/0^{\circ}$ to $60^{\circ}/60^{\circ}$ for equal angle and from $15^{\circ}/0^{\circ}$ to $15^{\circ}/60^{\circ}$ for unequal angle). Results revealed that both j and f factor increased as corrugation angle increased. Especially, f factor increased significantly at high corrugation angles. j and f factors of unequal angle plates and those of equal angle (obtained by averaging unequal angles) plates were approximately the same. The largest $j/f^{1/3}$, which implies the largest heat transfer rate per consumed power, was obtained at $15^{\circ}/15^{\circ}$. Existing correlations under- or over-predicted the present numerical results.

A Study on the Effect of corner Angle on Cup Drawing (코너각이 용기에 성형에 미치는 영향에 관한 연구)

  • 김진무;유호영
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.14-21
    • /
    • 1999
  • Trapezoid cups and square ones have been deep-drawn to 45mm in depth. Displacements and strains have been analysed by FEM and experiment. Strains and effective strains in the corner flanges of trapezoid cups have been compared with those in square cups. The results have shown that because of shear strains on the corner flange, it is necessary to adopt effective strain for comparing strains, mean vale of effective strains in the corner flange with a corner angle of 72 degrees is narly equal to those with a corner angle of a right angle and mean value of effective strains with a corner angle of 102 degrees is smaller than those with a corner angle of a right angle.

  • PDF

Effect of Equal Channel Angular Pressing Temperature on the Fracture and Mechanical Properties of Magnesium (마그네슘의 등통로각압축 시 파괴 및 기계적 특성에 미치는 공정온도 효과)

  • Yoon, S.C.;Bok, C.H.;Kwak, E.J.;Jeong, Y.G.;Kim, T.S.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Mg and Mg alloys are promising materials for light weight high strength applications. In this paper, grain refinement of pure Mg using severe plastic deformation was tried to enhance the mechanical properties of the hard-to-deform metallic material. The microstructure and the mechanical properties of Mg processed by equal channel angular pressing(ECAP) at various processing temperatures were investigated experimentally. ECAP with channel angle of $90^{\circ}$ and corner angle of $0^{\circ}$ was successful at $300^{\circ}C$ without fracture of the samples during the processing. The hardness of the ECAP processed Mg decreased with increasing ECAP processing temperature. The effect of temperature on the hardness and microstructure of the ECAP processed Mg were explained by the dislocation glide in the basal plane and non-basal slip systems and by the dynamic recrystallization and recovery.

Effects of Die Deformation and Channel Angle on Deformation Behavior of Materials During Equal Channel Angular Pressing with Pure-Zr (순수 지르코늄의 ECAP공정에서 금형의 변형 및 채널각이 재료의 변형거동에 미치는 영향)

  • Gwon, Gi-Hwan;Chae, Su-Won;Gwon, Suk-In;Kim, Myeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1751-1758
    • /
    • 2001
  • Among severe plastic deformation processes, ECAP has drawn much attention due to its advantages including ultra-fine grain size material production. In this paper, ECAP process with pure -Zirconium is investigated due to its applicability to nuclear reactors. The finite element method is employed to investigate the deformation behavior of materials during ECAP process. In particular, effects of process parameters such as die deformation and channel angles on the material behaviors have been investigated. Experimental studies have also been performed to verify the numerical results.

Manufacturing 2DOF Inflatable Joint Actuator by Pneumatic Control (공압제어를 통한 2DOF 팽창식 관절 액추에이터 제작)

  • Oh, Namsoo;Lee, Haneol;Rodrigue, Hugo
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.92-96
    • /
    • 2018
  • In this paper, a soft robotic arm which can prevent impact injury during human-robot interaction is introduced. Two degrees of freedom joint are required to realize free movement of the robotic arm. A robotic joint concept with a single degree of freedom is presented using simple inflatable elements, and then extended to form a robotic joint with two degrees of freedom joint using similar manufacturing methods. The robotic joint with a single degree of freedom has a joint angle of $0^{\circ}$ bending angle when both chamber are inflated at equal pressures and maximum bending angles of $28.4^{\circ}$ and $27.1^{\circ}$ when a single chamber if inflated. The robotic joint with two degrees of freedom also has a bending angle of $0^{\circ}$ in both direction when all three chambers are inflated at equal pressures. When either one or two chambers were pressurized, the robotic joint performed bending towards the uninflated chambers.

Development of Enhanced Contingency Screening and Selection Algorithm for On-line Transient Security Assessment (과도안전도 평가를 위한 개선된 상정고장 선택 및 여과 알고리즘 개발)

  • Kim Yong-Hak;Song Sung-Geun;Nam Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.306-314
    • /
    • 2005
  • In this paper, a new approach that is based on EEAC & only with network solutions for CS&S in the transient stability assessment is developed. The proposed CS&S algorithm in conjunction with EEAC to include the capability of performing on-line TSA without TDS is used to calculate the critical clearing time for stability index. In this algorithm, all generators are represented by classical models and all loads are represented by constant impedance load models. The accelerating & synchronizing power coefficient as an index is determined at its disturbance through solving network equation directly. As mentioned above, a new index for generator is generally used to determine the critical generators group. The generator rotor angle is fixed for non-critical generators group, but has equal angle increments for critical generators group. Finally, the critical clearing time is calculated from the power-angle relationship of equivalent OMIB system. The proposed CS&S algorithm currently being implemented is applied to the KEPCO system. The CS&S result was remarkably similar to TSAT program and SIME. Therefore, it was found to be suitable for a fast & highly efficient CS&S algorithm in TSA. The time of CS&S for the 139 contingencies using proposed CS&S algorithm takes less than 3 seconds on Pentium 4, 3GHz Desktop.

Effects of Illumination and Target Size on Time-To-Detect while Recovering Dark Adaptation (암순응 환경에서 조도수준과 표적크기가 탐지시간에 미치는 영향)

  • Park, Jae-Kyu;Park, Sung-Ha;Oh, Hyun-Seung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.71-76
    • /
    • 2009
  • Effects of dark adaptation have large safety implications. This study was aimed to investigate the effects of varying illuminance and the size of critical detail on visual performance (i.e., time-to-detect) in a dark room environment. While adapting to the dark environment, ten subjects were asked to detect and answer simple numerical expressions under 9 experimental conditions (3 illuminance level $\times$ 3 target size). The ANOVA results revealed that the time-to-detect was significantly affected by both of the illumination level and the size of critical detail. As illumination increased from 10 lux to 20 lux, the time-to-detect was significantly declined. For the size of critical detail, 0.5/min size (i.e., equal to 2 minutes of visual angle) resulted in a shorter time-to-detect, as compared to 0.7/min size (i.e., equal to 1.6 minutes of visual angle). Potential applications of this research include the development of design guidelines for illumination and warning signs in poorly illuminated viewing environments.

Shear lag coefficient of angles with bolted connections including equal and different legs through finite element method

  • Shahbazi, Lida;Rahimi, Sepideh;Hoseinzadeh, Mohamad;Rezaieaan, Ramzan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.493-502
    • /
    • 2022
  • Shear lag phenomenon has long been considered in numerous structural codes; however, the AISC provisions have now no longer proposed any unique equation to calculate the shear lag ratio in bolted connections for angles in general. It is noticeable that, however, codes used in this case are largely conservative and need to be amended. A parametric study consisting of 27 angle sections with equal legs and different with bolted connections was performed to investigate the effects of shear lag on the ultimate tensile capacity of angle members. The main parameters were: steel grade, connection length and eccentricity from the center of the plate, as well as the number of rows of bolts parallel to the applied force. The test results were compared with the predictions of the classical 1-x/l law proposed by Mons and Chesen to investigate its application to quantify the effect of shear lag. A parametric study was performed using valid FE models that cover a wide range of parameters. Finally, based on the numerical results, design considerations were proposed to quantify the effect of shear lag on the ultimate tensile capacity of the tensile members.

Characterization of Surfaces by Contact Angle Goniometry - II . Effect of Curvature on Contact Angle - (접촉각 측정에 의한 표면의 특성연구( II ) -섬유나 막대의 직경이 접촉각에 미치는 영향-)

  • Park Chung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.4 s.40
    • /
    • pp.437-445
    • /
    • 1991
  • The effect of diameter of rods or fibers on contact angle was studied in a vertical rod configuration. A contact angle measuring device described in the previous paper was optimized for the measurement of small-diameter fibers. It was shown that contact angles of water and hexadecane on nylon 6 monofilsments and glass rods increased with decrease of diameter below a critical diameter, which varied from one system to another. Beyond the critical value, contact angle of the liquid on the vertical glass rod reached to an equilibrium value which is equal to the unique value of the contact angle of the liquid drop on the horizontal glass plate.

  • PDF