• Title/Summary/Keyword: Epoxy-Granite Material

Search Result 8, Processing Time 0.017 seconds

Development of Drilling Center Column made of Epoxy-granite Material and Experimental Study on it's Structural Characteristics (드릴링 센타용 애폭시-그래나이트재 컬럼의 개발과 구조물 특성 실험)

  • Won, S.T.;Kim, J.H.;Lee, H.W.;Maeng, H.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-96
    • /
    • 1995
  • A new fungivle material named Epoxy-Granite composite is applied to the column structure of drilling center in order to investigate the advanced dynamic charateristics comparing with a conventional cast iron material. The dimensions of new column structure are adjusted to keep the same stiffness (EI value) and the manufacturing conditions are formulated based on the preceeding research experience about the development of Epoxy-Granite structural material. The two kinds of experiments are set up, one of which is for the measurement of natural mode and frequency using experimental modal analysis, and the other one is for the measurement of vibration amplitude during idling operation of a machine tool. The comparison of maximum accelerance values at each natural frequency of bending mode shows a Epoxy-Granite column have larger modal damping ratios(over 2times) than a cast iron column. The vibration amplitude of Epoxy-Granite column measrued on the bed, motor base, and top of column are also much smaller (up to 12%) than the case of cast iron column. It is therefore confirmed that a Epoxy-Granite material exhibits a good anti- vibrational propderty even if it is used under the actual operational environments of machine tool as a practical structural element.

  • PDF

Characteristics of Epoxy-Granite Composite Material For Ultra-Precision Machine Bed Structures (초정밀 가공기계 베드 구조물용 에폭시-그래나이트재의 특성에 관한 연구)

  • Kim, Jong-Ho;Won, Si-Tae;Maeng, Huee-Young;Park, Yeong-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.74-84
    • /
    • 1990
  • The machine tool structures for ultra-precision machining muxt be manufactured with materials which have high static and dynamic stiffness, high damping, a long term dimensional and thermal stability. This study aims at the development of new composite material Epoxy-Granite which exhibits the satisfactory characteristics as a material of ultra-precision mchine tool bed. The Epoxy-Granite testpieces that use epoxy resins as a binder and granite particles as a aggregate have been manufactured so as to examine the material properties about mechanical, thermal and damping characteristics. Experiments were carried out to obtain the proper manufacturing conditions of Expoxy-Granite specimens by varying the several testing conditions such as types of epoxy resins, particle sizes of granite and mixture ratio of epoxy resin and aggregate. Also, when Epoxy-Granite was compared with cast iron, GRANITAN which was imported from CMS of U.K. and granite materials, it has exhibited the superior or almost the same mechanical and damping properties and thermal conductivity, except for the thermal expansion.

  • PDF

Stuctural Characteristics on Drilling Center Column made of Epoxy-granite Material (드릴링 센타용 에폭시-그래나이트재 컬럼의 구조물 특성 연구)

  • 원시태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.158-165
    • /
    • 1995
  • A new fungible materal named Epoxy-Granite composite is applied to the column structure of drilling center in order to investigate the advanced dynamic chatateristics comparing with a conventional cast iron material. The dimensions of new colum structure are adjusted to keep the same stiffness (El value) and the manufacturing conditions are formulated based on the preceeding research experience about the development of Epoxy-Granite structural material. The two kinds of experiments are set up. one of which is for the measurement of natural mode and frequency using experimental modal analysis and the other one is for the measurement of vibration amplitude during idling operation of a machine fool. The comparison of maximum, accelerance values at each natural frequency of bending mode shows a Epoxy-Granite column have larger modal damping ratios(over 2times) than a cast iron column. The vibration amplitude of Epoxy-Granite column measued on the bed motor base and top of column are also much smaller (up to 12%) than the case of cast iron column. It is therefore confirmed that a Epoxy-Granite materal exhibits a good anti-vibrational property even if it is used under the actual operational environments of machine eool as a practical structural element.

  • PDF

Experimental Study on Structural Characteristics of Machine Bed Model Using Epoxy-Granite Material (에폭시 그래나이트재를 이용한 공작기계 베드 모델의 구조 특성에 관한 실험적 연구)

  • Maeng, H.Y.;Park, Y.I.;Won, S.T.;Kim, J.H.;Lee, H.S.;Park, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 1994
  • This study is to develop a new composite material, a mixture of epoxy resin and granite aggergates which is called Expoxy-Granite, to overcome the inherent disadvantages of conventional materials commonly used as a bed structure material of long-term dimensional/ thermal stability. Under the various manufacturing conditions which could be formulated through experimental investigation, we have constructed 6 kinds of Epoxy-Granite structure models having one fifth the size of the ultra-precision machine tool bed structure. They are compared with cast iron and pure granite models through the dynamic test and the thermal deformation test. Both in the steel ball dropping test and in the forced vibration test, three types of epoxy-granite models made in this study have shown much better dynamic characteristics than the cast iron model and almost the same characteristics as compared with the pure granite model. In the thermal deformation test the above composite materials have also represented lower thermal displacements in the vertical direction of each model as compared with other specimens. It is therefore seen that the epoxy-granite complsite material can be applied to the construction of high-precision machine tool bed, instead of cast iron or pure granite.

  • PDF

Characteristics of Ferrite-Resin Material for Improving Vibration-proof Property (Ferrite-Resin 복합재료의 방진 특성에 관한 연구)

  • Park, Y.I.;Maeng, H.Y.;Won, S.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.31-40
    • /
    • 1993
  • The vibration-proof material normally used in structural components of precision machinery or measuring instruments requires higher damping in vibration and better characteristics in dimensional stability and rigidity to accomplish the quality assurance of the products. In this study the ferrite-resin material, which is the mixture of epoxy resin and the oxidized steel (Fe$_{3}$O$_{4}$: ferrite) in consideration of characteristics of aggregator and binder, is developed and investigated as one of vibration-proof materials. Four kinds of composite plates for experiments are made by adding another filler materials such as steel powder, granite powder and carbon-fiber sheet to the basic ferrite-resin matrix. Their characteristics are compared with a cast iron specimen which has the same bending rigidity as other specimens. The ferrite-resin material gives the best damping effect in the motor-induced vibration test. Therefore, the material can be applied to the manufacturing industry for vibration damping of machine elements.

  • PDF

Deterioration and Conservation Treatment of the Three Storied Stone Pagoda in Seoak-ri, Gyeongju (경주 서악리 삼층석탑의 훼손상태 및 보존처리)

  • Lee, Myeong-Seong;Jeong, Min-Ho;Jung, Young-Dong;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.63-74
    • /
    • 2006
  • All rock materials of the three storied stone pagoda in Seoakri were composed of light gray alkali granite with medium grained and developed with small mialolitic cavities. This stone pagoda is preserving almost archetype except the head part because there was repair work already. But, foundation, basement and roof rocks are serious state by microbial invasion such as lichens. Because there are tree and grass that cause direct effect to stone pagoda surrounding. Therefore, conservation treatment executed the primary dry cleaning and secondary wet cleaning treatment. Stone surface is partly not removed well such as lichens which part removed using cleansing device that use high temperature steam. Some treated part concrete and epoxy resin remove and retreatment with mixing talc and alkali granite powder to epoxy resin. Did color matching at mixing process of epoxy resin and fillers to properties with set the feel of a material. Also, drainage ditched to minimize inflow of rainwater fall from slope that is on the east of stone pagoda, tree and grass in stone pagoda surrounding wished to do remove and control occurrence of lichens hereafter minimizing moisture conteats.

  • PDF

Effect of Consolidation using Artificial Porous Material for Stone Cultural Property (인공 다공질체를 이용한 석조문화재 강화제의 처리효과)

  • Lee, Jae-Man;Lee, Myeong-Seong;Kim, Jae-Hwan;Lee, Mi-Hye
    • Journal of Conservation Science
    • /
    • v.26 no.3
    • /
    • pp.325-334
    • /
    • 2010
  • In order to clarify the effect of consolidant, the artificial porous material with low intensity was manufactured using granite powder and Portland cement. We have prepared four kinds of alkoxysilane system consolidants, a acrylic resin and a epoxy resin and investigated about characteristics before and after consolidation. As a result of the research, Silres BS OH 100 was effective for density and surface hardness. SS-101 with hydrophobicity and Site SX-RO with hydrophilicity had the good durability over salts weathering. On the other hand, Syton HT-50 and Paraloid B72 were easily destructed by salt weathering because they were concentrated on surface area by the low penetration depth. Araldite 2020 was the most effective consolidant for improvement of physical properties.

Material Characteristics and Quantitative Deterioration Assessment of the Sinwoldong Three-storied Stone Pagoda in Yeongcheon, Korea (영천 신월동삼층석탑의 재질특성과 훼손도 정량평가)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Chae, Seong-Tae;Jung, Young-Dong
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.349-360
    • /
    • 2010
  • The Yeongsheon Sinwoldong three-storied stone pagoda (Treasure No. 465) composed mainly of drusy alkali-granite. The major rock-forming minerals are biotite, quartz, amphiboles, orthoclase and plagioclase. Yellowish brown and black discoloration are formed at the eight sculpture Buddha of the stylobate. A broken rock fragments in the roof material were repaired using epoxy resin and cement mortar in the past. As a result of the infrared thermography analysis from the pagoda, cracks and exfoliation were not serious. Also, P-XRF analysis showed that concentration of Fe (mean 5,599ppm) and S (mean 3,270ppm) were so high in yellowish discoloration parts. Black discoloration area was detected highly Mn (mean 2,155ppm) concentration around the eight sculpture Buddha of the stylobate. The main reason for these are inorganic contaminants from disengaged rock ingredient and organic contaminants from withered plant body. Degree of physical weathering is relatively high in the southern and northern side. The eastern and western side had similar with weathering condition. The northern and eastern side were serious discoloration and biological weathering relatively. Therefore, we suggest that the pagoda need to do cleaning of biological contaminant and conservation treatment to weakened materials of rock and long term monitoring.