• 제목/요약/키워드: Epoxy matrix

검색결과 414건 처리시간 0.028초

Fractal Approach to Alternating Current Impedance Spectroscopy Studies of Carbon Nanotubes/Epoxy Polymer Composites

  • Belhimria, Rajae;Boukheir, Sofia;Samir, Zineb;Len, Adel;Achour, Mohammed Essaid;Eber, Nandor;Costa, Luis Cadillon;Oueriagli, Amane
    • Applied Microscopy
    • /
    • 제47권3호
    • /
    • pp.126-130
    • /
    • 2017
  • The dielectric relaxation characteristics of composites with different concentrations of carbon nanotubes loaded in an epoxy polymer matrix has been studied as a function of frequency over a wide range (1 Hz~10 MHz) at room temperature. Two characterization techniques were used in this work to measure and calculate the dimensionality parameters: small angle neutron scattering and impedance spectroscopy. The results obtained from both methods are in good agreement, indicating the reliability of the estimated fractal dimension, despite of the difference in the length scales accessed by the two techniques.

고분자 복합재료의 구조적 특성 (The structure properties of polymer composite)

  • 노현지;이성갑;남성필;김다미;안병립;원우식;우형관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.262-263
    • /
    • 2009
  • To add Nanofiller in the epoxy which is used with the solid insulation material of existing and is a research which observes the improvement of the structural quality to produce the Nanocomposite. Montmorillonite uses with Nanofiller, MMT of the content expense (wt%) which is various and mixed an epoxide and produced sample. According to content of the sample result MMT according to respectively content expense to measure SEM photographing which is the possibility of knowing the minute structure of section with sample where is produced and the tensile strength will be able to observe the change of quality. MMT silicate layer uniformly more in the result and within epoxy matrix, being dispersed, will be able to observe.

  • PDF

A Review on Nanocomposite Based Electrical Insulations

  • Paramane, Ashish S.;Kumar, K. Sathish
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권5호
    • /
    • pp.239-251
    • /
    • 2016
  • The potential of nanocomposites have been drawing the intention of the researchers from energy storage to electrical insulation applications. Nanocomposites are known to improve dielectric properties, such as the increase in dielectric breakdown strength, suppressing the partial discharge (PD) as well as space charge, and prolonging the treeing, etc. In this review, different theories have been established to explain the reactions at the interaction zone of polymer matrix and nanofiller; the characterization methods of nanocomposites are also presented. Furthermore, the remarkable findings in the fields of epoxy, cross-linked polyethylene (XLPE), polypropylene and polyvinyl chloride (PVC) nanocomposites are reviewed. In this study, it was observed that there is lack of comparison between results of lab scale specimens and actual field aged cables. Also, non-standardization of the preparation methods and processing parameters lead to changes in the polymer structure and its surface degradation. However, on the positive side, recent attempt of 250 kV XLPE nanocomposite HVDC cables in service may deliver a promising performance in the coming years. Moreover, materials such as self-healing polymer nanocomposites may emerge as substitutes to traditional insulations.

에폭시 복합체의 TSC특성파 구조변화사이의 상관성 연구 (A Study on The Relationship between TSC Properties and Structural Changes of Epoxy Composites Materials)

  • 왕종배;박준범;박경원;신철기;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1993년도 추계학술대회 논문집
    • /
    • pp.75-79
    • /
    • 1993
  • The Thermally Stimulated Current(TSC) method has been allied to study the influence of the structural change and interface on the electrical properties of epoxy composites. Three DGBA- MeTHPA matrix model samples mixed different ratios arts silica(SiO$_2$) filled sample and silaln treating-filled sample have been studied. Above room temperature, the relaxation mode ${\alpha}$ peak associated with T$\_$g/ has been located at 110$^{\circ}C$. Below glass transition temperature(T$\_$g/), three relaxation modes are observed in all samples : a ${\beta}$ mode situated at 10$^{\circ}C$, a ${\gamma}$ mode located at -40$^{\circ}C$ and a $\delta$mode appeared in -120$^{\circ}C$, which may be due to segmental motion, side chains, substitution and terminal groups. The analysis of its fine structure indicates that constitution of elementary processes is characterized by the activation energy and relaxation time. Also the change of the molecular structure and their thermal motion are compared with the relaxation mode and conduction mechanism in TSC spectra through the dielectric properties and FTIR measurements.

  • PDF

간헐적인 층간접착 을 이용한 Graphite/Epoxy 복합재료 의 파괴인성 개선 (Fracture Toughness Improvement of Graphite/Epoxy Composite by Intermittent Interlaminar Bonding)

  • 임승규;홍창선
    • 대한기계학회논문집
    • /
    • 제8권5호
    • /
    • pp.425-434
    • /
    • 1984
  • 본 연구에서는 [0˚/90˚]$_{2s}$, Gr/Gp 복합 적층판에 대해서 접착면의 비율과 폴리에스테르 필름의 구멍의 형상이 적층판의 인장 성질과 파괴인성에 미치는 영향에 대한 실험적인 결과를 얻고자 한다.다.

Interfacial Properties of Electrodeposited Carbon Fibers Reinforced Epoxy Composites Using Fragmentation Technique and Acoustic Emission

  • Yeong-Min Kim;Joung-Man Park;Ki-Won Kim;Dong-Jin Yoon
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.28-31
    • /
    • 1999
  • Carbon fiber/epoxy composites using electrodeposited monomeric and polymeric coupling agents were compared with the dipping and the untreated cases. Treating conditions such as time, concentration and temperature were optimized. Four-fibers embedded micro-composites were prepared for fragmentation test. Interfacial properties of four-fiber composites with different surface treatments were investigated with simultaneous acoustic emission (AE) monitoring. The microfailure mechanisms occurring from fiber break, matrix and interlayer crackings were examined by AE parameters and an optical microscope. It was found that interfacial shear strength (IFSS) of electrodeposited carbon fibers was much higher than the other cases under dry and wet conditions. Well separated and different-shaped AE groups occurs for the untreated and ED treated case, respectively.

  • PDF

DGEBA/MDA/SN 계의 파괴 거동 (Fracture behavior of DGEBA/MDA/SN System)

  • 조성우;심미자;김상욱
    • 한국재료학회지
    • /
    • 제3권2호
    • /
    • pp.140-144
    • /
    • 1993
  • 열경화성 에폭시 수지의 물성 중 담약성을 개선하기 위해 새로운 반응성첨가제 succinonitrile(SN)을 Diglycidy1 ether of bisphenol A(DGEBA(-4,4'-methylene dianiline(MDA)계에 도입하여 현재 널리 사용되고 있는 유리섬유 복합재료에 매트릭스로 사용될 경우에 있어서 파괴되는 거동을 미시적으로 고찰하였다. 그 결과 post debond friction 에너지가 파괴 거동을 주도하고 있으며, 다음으로 pull-out에너지 그리고 debonding 에너지 순으로 나타났다. 따라서 파괴 거동에 미치고 있는 중요한 요인은 섬유와 매트릭스 간의 경계면 전단 응력이 크게 좌우함을 알 수 있었으며, 이때 반응성 첨가제 SN은 전단응력을 떨어뜨리는 것으로 고찰되었다.

  • PDF

Properties of multi-walled carbon nanotube reinforced epoxy composites fabricated by using sonication and shear mixing

  • Koo, Min Ye;Shin, Hon Chung;Kim, Won-Seok;Lee, Gyo Woo
    • Carbon letters
    • /
    • 제15권4호
    • /
    • pp.255-261
    • /
    • 2014
  • Multi-walled carbon nanotube reinforced epoxy composites were fabricated using shear mixing and sonication. The mechanical, viscoelastic, thermal, and electrical properties of the fabricated specimens were measured and evaluated. From the images and the results of the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content showed better dispersion and higher strength than those of the other specimens. The Young's moduli of the specimens increased as the nanotube filler content was increased in the matrix. As the concentrations of nanotubes filler were increased in the composite specimens, their storage and loss moduli also tended to increase. The specimen having a nanotube filler content of 0.6 wt% showed higher thermal conductivity than that of the other specimens. On the other hand, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value than that of the other specimens. The electrical conductivities also increased with increasing content of nanotube filler. Based on the measured and evaluated properties of the composites, it is believed that the simple and efficient fabrication process used in this study was sufficient to obtain improved properties in the specimens.

에폭시 복합재료의 열자격전류(TSC) 특성: - 경화제와 충진제의 영향 (The Characteristics of Termally Stimulated Current for Epoxy Composites : The effects of Curing Agents and Fillers)

  • 왕종배;박준범;이준웅;김홍철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1162-1164
    • /
    • 1993
  • The Thermally Stimulated Current(TSC) spectroscopy has been applied to study the influence of the structual cahange and interface on the electrical properties of epoxy composites. Three DGEBA-MeTHPA matrix model samples mixed different ratios and silica($SiO_2$) filled sample and silaln treating-filled sample has been studied. Above room temperature, the relaxation mode $\alpha$ peak associated with Tg has been located at $110^{\circ}C$. Below glass transition temperature(Tg), three relaxation modes are observed in all samples: a $\beta$ mode situated at $10^{\circ}C$, a $\gamma$ mode located at $-40^{\circ}C$ and a $\delta$ mode appeared in $-120^{\circ}C$. The analysis of its fine structure indicates that constitution of elementary processes is characterized by the activation energy and relaxation time. Also the dielectric relaxation properties have been investigated to compare the the change of the molecular structure and motion to the relaxation properties and conduction mechanism in TSC spectra.

  • PDF

직조구조차이와 적층각의 변화에 따른 섬유강화복합재료의 압축특성 (Compressive Characteristics of Composites According to the Micro-structure and Stacking angle)

  • 유성환;박석원;장승환
    • Composites Research
    • /
    • 제22권1호
    • /
    • pp.15-21
    • /
    • 2009
  • 본 논문에서는 편향각을 갖는 직물 복합재료 시편을 제작하여 정적 압축실험과 피로실험을 수행하고 그 결과를 비교하였다. 직물구조의 차이에 따른 압축거동을 평가하기 위해 동일한 섬유와 기지로 구성된 일방향 복합재료와 평직 복합재료의 적층순서를 동일하게 조절한 시편을 준비하였다. 정적 압축실험을 통해 편향각을 갖는 시편의 강성과 강도를 측정하였고, 측정된 강도를 바탕으로 압축강도 예측식을 제안하였다. 피로실험을 통해 복합재료의 직물 구조의 차이에 의한 피로수명의 변화를 관찰하였으며, 편향각의 변화와 하중조건에 따른 피로수명의 차이를 비교하였다.