• Title/Summary/Keyword: Epoxy composite

Search Result 1,346, Processing Time 0.031 seconds

A study of mixed-mode interlaminar fracture toughness of graphite/epoxy composite (炭素纖維强化 複合材料의 혼합모우드 層間破壞靭性値에 대한 硏究)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.198-207
    • /
    • 1986
  • This study investigates interlaminar fracture characteristics of Graphite/Epoxy composite (HFG Graphite/Epoxy) under mode I (opening mode), mode II (sliding mode) and mixed mode loading conditions. The effects on interlaminar fracture toughness due to different fiber orientations on the crack surface are also investigated. The antisymmetric test fixture proposed by M. Arcan is used for this test. Both critical stress intensity foctors and critical energy release rates were determined and several mixed mode fracture criteria were compared to the experimental data. Also fracture surfaces were investigaed to obtain informations on the fracture behaviors of Graphite/Epoxy composite by means of a scanning electron microscope(SEM).

Electrical Breakdown Characteristics of Composite Insulation Composed of Epoxy Resins with N2, Dry-air in Non-uniform Field (불평등 전계 시 에폭시와 N2, dry-air 혼합절연체의 절연파괴특성)

  • Jung, Hae-Eun;Park, Seong-Hee;Kang, Seong-Hwa;Lim, Kee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.462-463
    • /
    • 2007
  • SF6 widely used as insulating gas is rising as the environment problem. For decreasing this greenhouse gas, electrical breakdown characteristics of composite insulation composed of epoxy resins with N2, air are studied in non-uniform field. The gap of needle to plane was 3mm, 5mm. The pressure of air, nitrogen was varied within the range of 0.1~0.6MPa. The thickness of a needle is 1mm and the curvature radius of the end of needle is 100um. The diameter of a plane made of the stainless steel is 50mm. As a result of the experiment, the breakdown voltage is increased about 3 times when epoxy resins is composited. The thickness of epoxy resins filled opposite to electrode concentrated electric field weakly influences on breakdown voltage.

  • PDF

Steel-Ball-Impact fracture Behavior of Soda-Lime Glass Plates Bonded with Glass Fabric/Epoxy Prepreg (직물형 유리섬유/에폭시 프리프레그로 피막된 판유리의 강구 충격 파괴 거동)

  • 김형구;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.20-25
    • /
    • 2000
  • In order to study the impact fracture behavior of brittle materials, a steel-ball-impact experiment was Performed. Five kinds of materials were used in this study : soda-lime glass plates, glass/epoxy prepreg-one layer-bonded and unbonded glass plates, glass/epoxy prepreg-three layers-bonded and unbonded glass plates. Fracture patterns, the maximum stress and absorbed fracture energy were observed according to various impact velocities 40-120m/s. With increasing impact velocity, ring crack, cone crack, radial crack and lateral crack took place in the interior of glass plates. The generation of such cracks was largely reduced with glass/epoxy prepreg coating. Consequently, it is thought that the characteristics of the dynamic Impact fracture behavior could be evaluated using the absorbed fracture energy and the maximum stress measured at the back surface of glass plates.

  • PDF

Tension-Compression Fatigue Behavior of Carbon Fabric/Epoxy Laminates (Carbon Fabric/Epoxy 적층판의 인장-압축 피로거동)

  • 김진봉;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.60-64
    • /
    • 2001
  • In this paper, the tension-compression fatigue test method and the fatigue life characteristics of carbon fabric/epoxy laminate coupon are presented. To avoid the buckling during the compression, a proper design for the test coupons is essential. The critical buckling loads for the coupons are calculated by assuming the coupons as columns under two types of fixed conditions. The first is that both ends of each coupon are perfectly clamped, the second is that both ends of each coupon are simply supported. The strain-load curves are obtained by compressing the representative coupons, on each surface of which a strain gage is attached. The buckling loads obtained from the tests are all between the two calculated critical buckling loads. All the coupons are broken by the compression during the fatigue tests. It is estimated to be the reason that the fatigue load causes delamination before the eventual failure of each coupon, and sequentially the micro-buckling in the delaminated region drives each coupon into fatigue failure during the compression. The S-N curve, the fatigue life characteristics of carbon fabric/epoxy is obtained.

  • PDF

Studies on Curing Behavior and Fracture Toughness of Tetrafunctional Epoxy Resin/Fluorine-containing Epoxy Resin Blend System (4관능성 에폭시 수지/불소를 함유한 에폭시 수지 블렌드 시스템의 경화거동 및 파괴인성에 관한 연구)

  • Jin, Fan-Long;Lee, Jae-Rock;Park, Soo-Jin;Shin, Jae-Sup
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.273-275
    • /
    • 2002
  • In this studies, curing behavior and mechanical properties of tetrafunctional epoxy resin (4EP)/ fluorine-containing epoxy resin (FEP) blend systems was investigated with 4, 4'-diaminodiphenol methane (DDM) as a curing agent. The cure activation energies $(E_a)$) were studied by Flynn-Wall-Ozawa's equation with dynamic DSC method. For the fracture toughness of the casting specimens, the critical stress intensity factor ($K_{IC}$) and the specific fracture energy ($G_{IC}$) were determined by fracture toughness test.

  • PDF

Stress intensity factors for an interface crack between an epoxy and aluminium composite plate

  • Itou, S.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.99-109
    • /
    • 2007
  • A cracked composite specimen, comprised of an epoxy and an aluminium plate, was fractured under a tensile load. In this paper, two crack configurations were investigated. The first was an artificial center crack positioned in the epoxy plate parallel to the material interface. The other was for two edge cracks in the epoxy plate, again, parallel to the interface. A tensile test was carried out by gradually increasing the applied load and it was verified that the cracks always moved suddenly in an outward direction from the interface. The d/a ratio was gradually reduced to zero, and it was confirmed that the maximum stress intensity factor value for the artificial center crack, $K_{{\theta}{\theta}}^{max}$, approached that of an artificial interface crack,$K_{{\theta}{\theta}}^{ifc\;max}$ (where: 2a is the crack length and d is the offset between the crack and interface). The same phenomenon was also verified for the edge cracks. Specifically, when the offset, d, was reduced to zero, the maximum stress intensity factor value, $K_{{\theta}{\theta}}^{max}$, approached that of an artificial interface edge crack.

Assessment of Combustion Property for Epoxy/Montmorillonite Composite (Epoxy/Montmorillonite 합성체의 연소 특성 평가)

  • Song, Young-Ho;Ha, Dong-Myeong;Chung, Kook-Sam
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.168-172
    • /
    • 2008
  • The flame retardancy by the addition of clay was evaluated to present as the fundamental data to decrease the fire hazard of polymers and life losses. The flame retardancy was examined to increase flame retardancy and to decrease smoke yield of epoxy by the addition of clay such as montmorillonite. For this study, the experiments of flame retardancy were conducted as follows : the measurement of the limiting oxygen index(LOI), char yield, and smoke density. As MMT concentration increased, epoxy/MMT composite increased LOI and char yield with the decreased smoke density.

  • PDF

Low-Velocity Impact Response of Hybrid Laminated Composite Plate (혼합적층된 복합재료평판의 저속충격응답)

  • Lee, Young-Shin;Kang, Kun-Hee;Park, Oung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.713-722
    • /
    • 1991
  • 본 연구에서는 graphite/epoxy와 glass/epoxy 그리고 graphite/epoxy와 kevl- ar/epoxy의 혼합적층된 복합재료 평판의 저속충격에 대한 응답을 유한요소 모델을 사 용하여 수치해석 한후, 각각의 단일적층판들의 결과와 비교하였으며, 이때의 접촉력 관계식은 Yang과 Sun이 제안한 수정된 접촉법칙을 이용하였다. 또한, 수치해석 결과 에서의 충격자의 속도변화로써 혼합적창판 배열에 따른 에너지 흡수율을 계산하였고, 이를 충격특성이 취약한 graphite/epoxy 단일 적층판의 결과와 비교 고찰하였다.

The Study of Water Stability of MDF Cement Composite by Addition of Silane Coupling Agent (Silane Coupling Agent 첨가에 의한 MDF Cement Composite의 수분안정성 연구)

  • 노준석;김진태;박춘근;오복진;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.421-428
    • /
    • 1998
  • The effect of silane coupling agents on the water stability of HAC/PVA based MDF cement composites which were modified with urethane and epoxy resin were studied as a function of the functional groups and addition amount of silane coupling agent. According to the composition of polymer matrix the silanes with different functional groups showed the different effectiveness. In case of the only PVA matrix the silane with vinyl functional group was more effective than other silanes. When the epoxy resin was added the silane of epoxy-methodxy group enhanced the flexural strength of dry and wet state more than other. In case of urethane-added MDF cement the silane of diamine group was effective and enhanced the water sta-bility fo MDF cement composite more and more as the addition amount of silane increased, Especially in case of warm-presed composite the effect of silane was enhanced By addition of 2wt% of silane with 야-amine group the flexural strength of urethane-added composites were enhanced by 20% more in dry state 40-70% in wet state in accord with the porosity analysis. The flexural strength of the poxy resin-added MDF cement composite was increased by addition of 1wt% and 2wt% silane of epoxy-methoxy group However the addition of 4wt% of silane decreased the flexural strength of dry and wet state by formation of closed pore in the polymer matrix.

  • PDF

Characterization of Epoxy Resin Containing Nano Clay Prepared by Electron Beam (전자선에 의해 제조된 나노 clay 함유 에폭시 수지의 특성)

  • Park, Jong-Seok;Lee, Seung-Jun;Lim, Youn-Mook;Jeong, Sung-In;Gwon, Hui-Jeong;Shin, Young-Min;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • Epoxy resin is widely used as aerospace, automobile, construction and electronics due to their good mechanical and electrical properties and environmental advantages. However, the inherent flammability of epoxy resin has limited its application in some field where good flame retardancy is required. Nano clay can enhance the properties of polymers such as flames retardancy and thermal stability. In this study, we have investigated the nanoclay filled epoxy composite, which has good flame retardancy while maintaining high mechanical properties. The cured epoxy resins were obtained using an electron beam curing process. The nano clays were dispersed in epoxy acrylate solution and mechanically stirred. The prepared mixtures were irradiated using an electron beam accelerator. The composites were characterized by gel content and thermal/mechanical properties. Moreover, the flammability of the composite was evaluated by limited oxygen index (LOI). The flame retardancy of nano clay filled epoxy composite was evidently improved.