• Title/Summary/Keyword: Epithelial-to-mesenchymal transition (EMT)

Search Result 139, Processing Time 0.023 seconds

Epithelial-mesenchymal transition in osteogenic sarcoma of the neck following oral squamous cell carcinoma (구강 편평세포암종 제거 후 발생한 경부 골육종에서의 상피간엽이행)

  • Kim, Hyun-Sil;Kim, Nam-Hee;Han, Seon-Hui;Cha, In-Ho;Seo, Dong-Jun;Park, Won-Se;Yook, Jong-In;Kim, Hyung-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.3
    • /
    • pp.172-176
    • /
    • 2010
  • Postirradiation extraosseous osteogenic sarcomas are uncommon in the head and neck, despite the extensive use of high-dose radiation. It has been described as de novo radiation-induced neoplasm. We present a 73-year-old male who had been treated by radiotherapy for gingival cancer 7 years earlier and later developed extraosseous osteogenic sarcomas (EOSs) of the neck. Microscopically, the neck mass was composed with mesenchymal malignant cells with cartilaginous and osteogenic differentiation. Immunohistochemical stain demonstrated strong positivity of tumor cells for Snail, the one of major epithelial-mesenchymal transition (EMT) inducer. The E-cadherin expression was scarce, showing inverse relationship to Snail expression. Compared with previous squamous cell carcinoma (SCC) of the gingiva, the present EOS sample revealed the remained epithelial cells on cytokeratin immunohistochemistry, suggesting the tumor arise from the cells of epithelial origin. We have also reviewed the previous 6 cases of head and neck EOSs carefully. The clinicopathologic features of the unusual lesion suggest that it is an incomplete EMT of precedent epithelial malignancy rather than de novo pathology.

Correlation of Overexpression of Nestin with Expression of Epithelial-Mesenchymal Transition-Related Proteins in Gastric Adenocarcinoma

  • Liu, Jin-Kai;Chen, Wan-Cheng;Ji, Xiao-Zhen;Zheng, Wen-Hong;Han, Wei;An, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2777-2783
    • /
    • 2015
  • Background: Nestin is associated with neoplastic transformation. However, the mechanisms by which nestin contributes regarding invasion and malignancy of gastric adenocarcinoma (GAC) remain unknown. Recent studies have shown that the epithelial-mesenchymal transition (EMT) is important in invasion and migration of cancer cells. In the present study, we aimed to investigate the expression of nestin and its correlation with EMT-related proteins in GAC. Materials and Methods: The expression of nestin and EMT-related proteins was examined in GAC specimens and cell lines by immunohistochemistry and Western blotting. Clinicopathological features and survival outcomes were retrospectively analyzed. Results: Positive nestin immunostaining was most obviously detected in the cytoplasm, nucleus or both cytoplasm and nucleus of tumor cells in 19.2% (24/125) of GAC tissues, which was significantly higher than that in normal gastric mucosa tissues (1.7%, 1/60) (p=0.001). Nestin expression was closely related to several clinicopathological factors and EMT-related proteins (E-cadherin, vimentin and Snail) and displayed a poor prognosis. Interestingly, simultaneous cytoplasmic and nuclear nestin expression correlated with EMT-related proteins (E-cadherin, vimentin and Snail) (p<0.05) and lymph node metastasis (p=0.041) and a shorter survival time (p<0.05), but this was not the case with cytoplasmic or nuclear nestin expression. Conclusions: Nestin, particularly expression in both cytoplasm and nucleus, might be involved in regulating EMT and malignant progression in GAC, with potential as an unfavorable indicator in tumor diagnosis and a target for clinical therapy.

KPNA3 promotes epithelial-mesenchymal transition by regulating TGF-β and AKT signaling pathways in MDA-MB-231, a triple-negative breast cancer cell line

  • Jaesung Choi;Jee-Hye Choi;Ho Woon Lee;Dongbeom Seo;Gavaachimed Lkhagvasuren;Jung-Woong Kim;Sang-Beom Seo;Kangseok Lee;Kwang-Ho Lee
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.120-125
    • /
    • 2023
  • Karyopherin-α3 (KPNA3), a karyopherin-α isoform, is intimately associated with metastatic progression via epithelial-mesenchymal transition (EMT). However, the molecular mechanism underlying how KPNA3 acts as an EMT inducer remains to be elucidated. In this report, we identified that KPNA3 was significantly upregulated in cancer cells, particularly in triple-negative breast cancer, and its knockdown resulted in the suppression of cell proliferation and metastasis. The comprehensive transcriptome analysis from KPNA3 knockdown cells indicated that KPNA3 is involved in the regulation of numerous EMT-related genes, including the downregulation of GATA3 and E-cadherin and the up-regulation of HAS2. Moreover, it was found that KPNA3 EMT-mediated metastasis can be achieved by TGF-β or AKT signaling pathways; this suggests that the novel independent signaling pathways KPNA3-TGF-β-GATA3-HAS2/E-cadherin and KPNA3-AKT-HAS2/E-cadherin are involved in the EMT-mediated progress of TNBC MDA-MB-231 cells. These findings provide new insights into the divergent EMT inducibility of KPNA3 according to cell and cancer type.

Silymarin Attenuates Invasion and Migration through the Regulation of Epithelial-mesenchymal Transition in Huh7 Cells (간암세포주에서 상피간엽전환억제를 통한 Silymarin의 침윤 및 전이 억제 효과)

  • Kim, Do-Hoon;Park, So-Jeong;Lee, Seung-Yeon;Yoon, Hyun-Seo;Park, Chung Mu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.3
    • /
    • pp.337-344
    • /
    • 2018
  • Hepatocellular carcinoma (HCC), a major type of hepatoma, is associated with high recurrence and mortality because of its uncontrolled metastatic feature. Silymarin is a polyphenolic flavonoid from Silybum marianun (milk thistle) and exhibits anti-carcinogenic activity through modulation of the epithelial-mesenchymal transition (EMT) in several cancer cells. In this study, the inhibitory mechanism of silymarin against migration and invasion was investigated in the Huh7 HCC cell line. Wound healing and in vitro invasion assays were conducted to examine the effects of silymarin on migration and invasion. Western blot analysis was also applied to evaluate the inhibitory effects of silymarin on the EMT-related genes and their upstream signaling molecules. Silymarin inhibited the migratory and invasive activities of Huh7 cells. In addition, silymarin attenuated the protein expression levels of vimentin and matrix metalloproteinase (MMP)-9 as well as their transcription factors, Snail, and nuclear factor $(NF)-{\kappa}B$, while the expression of E-cadherin was increased by the silymarin treatment. Among the upstream signaling molecules, the phosphorylation of Akt was inhibited by the silymarin treatment, which was confirmed by the selective inhibitor, LY294002. Consequently, silymarin inhibited the invasive and migratory activities in Huh7 cells through the modulation of EMT-related gene expression by the PI3K/Akt signaling pathway, which may have potential as a chemopreventive agent against HCC metastasis.

Epithelial to Mesenchymal Transition in CAPD Patients (복막의 섬유화 기전으로서의 상피중간엽전이)

  • Do, Jun-Young
    • Journal of Yeungnam Medical Science
    • /
    • v.23 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • Epithelial to mesenchymal transition (EMT) is an important etiologic factor for the development of peritoneal fibrosis in CAPD patients. Mesothelial cells are main source of trans-differentiated fibroblasts under stress from the bioincompatible peritoneal dialysate. In our study there was no difference in dialysate TGF-${\beta}$ and VEGF between the low and high GDP groups during an initial 12 months. However, after adjusting with D-CA125, the low GDPs group showed a significantly lower D-TGF-${\beta}$/D-CA125 and D-VEGF/CA125 during the initial 12 months. Among the adjusted peritoneal growth factors for CA125, VEGF/CA125 and TGF-b/CA125 were factors significantly associated with greater EMT in this study. Adjustment of the peritoneal growth factor for effluent CA125 (surrogate for mass of HPMCs) revealed significant association with EMT suggesting that the fibroblastoid transition from HPMCs could be affected by the amount of intraperitoneal growth factors (TGF-b, VEGF) per unit mass of HPMCs. There was significant improvement in both cell score and D-CA125 at the sixth and 12th months after switching from a high GDPs solution to a low GDPs solution. Use of icodextrin solution in patients who had average peritoneal transport showed not only better systemic effects such as decreased glucose absorption via dialysate but also preservation of the peritoneum, including less EMT and high mesothelial bulk mass. In conclusion, Therapy with low GDP solution including icodextrin may positively impact preservation of the peritoneal membrane integrity and prevention of peritoneal fibrosis with time on PD.

  • PDF

Hydrogen Peroxide Promotes Epithelial to Mesenchymal Transition and Stemness in Human Malignant Mesothelioma Cells

  • Kim, Myung-Chul;Cui, Feng-Ji;Kim, Yongbaek
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3625-3630
    • /
    • 2013
  • Reactive oxygen species (ROS) are known to promote mesothelial carcinogenesis that is closely associated with asbestos fibers and inflammation. Epithelial to mesenchymal cell transition (EMT) is an important process involved in the progression of tumors, providing cancer cells with aggressiveness. The present study was performed to determine if EMT is induced by $H_2O_2$ in human malignant mesothelioma (HMM) cells. Cultured HMM cells were treated with $H_2O_2$, followed by measuring expression levels of EMT-related genes and proteins. Immunohistochemically, TWIST1 expression was confined to sarcomatous cells in HMM tissues, but not in epithelioid cells. Treatment of HMM cells with $H_2O_2$ promoted EMT, as indicated by increased expression levels of vimentin, SLUG and TWIST1, and decreased E-cadherin expression. Expression of stemness genes such as OCT4, SOX2 and NANOG was also significantly increased by treatment of HMM cells with $H_2O_2$. Alteration of these genes was mediated via activation of hypoxia inducible factor 1 alpha (HIF-$1{\alpha}$) and transforming growth factor beta 1 (TGF-${\beta}1$). Considering that treatment with $H_2O_2$ results in excess ROS, the present study suggests that oxidative stress may play a critical role in HMM carcinogenesis by promoting EMT processes and enhancing the expression of stemness genes.

SDC4 Gene Silencing Favors Human Papillary Thyroid Carcinoma Cell Apoptosis and Inhibits Epithelial Mesenchymal Transition via Wnt/β-Catenin Pathway

  • Chen, Liang-Liang;Gao, Ge-Xin;Shen, Fei-Xia;Chen, Xiong;Gong, Xiao-Hua;Wu, Wen-Jun
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.853-867
    • /
    • 2018
  • As the most common type of endocrine malignancy, papillary thyroid cancer (PTC) accounts for 85-90% of all thyroid cancers. In this study, we presented the hypothesis that SDC4 gene silencing could effectively attenuate epithelial mesenchymal transition (EMT), and promote cell apoptosis via the $Wnt/{\beta}-catenin$ signaling pathway in human PTC cells. Bioinformatics methods were employed to screen the determined differential expression levels of SDC4 in PTC and adjacent normal samples. PTC tissues and adjacent normal tissues were prepared and their respective levels of SDC4 protein positive expression, in addition to the mRNA and protein levels of SDC4, $Wnt/{\beta}-catenin$ signaling pathway, EMT and apoptosis related genes were all detected accordingly. Flow cytometry was applied in order to detect cell cycle entry and apoptosis. Finally, analyses of PTC migration and invasion abilities were assessed by using a Transwell assay and scratch test. In PTC tissues, activated $Wnt/{\beta}-catenin$ signaling pathway, increased EMT and repressed cell apoptosis were determined. Moreover, the PTC K1 and TPC-1 cell lines exhibiting the highest SDC4 expression were selected for further experiments. In vitro experiments revealed that SDC4 gene silencing could suppress cell migration, invasion and EMT, while acting to promote the apoptosis of PTC cells by inhibiting the activation of the $Wnt/{\beta}-catenin$ signaling pathway. Besides, $si-{\beta}-catenin$ was observed to inhibit the promotion of PTC cell migration and invasion caused by SDC4 overexpression. Our study revealed that SDC4 gene silencing represses EMT, and enhances cell apoptosis by suppressing the activation of the $Wnt/{\beta}-catenin$ signaling pathway in human PTC.

Effect of Korean Red Ginseng extract on colorectal lung metastasis through inhibiting the epithelial-mesenchymal transition via transforming growth factor-β1/Smad-signaling-mediated Snail/E-cadherin expression

  • Kee, Ji-Ye;Han, Yo-Han;Mun, Jeong-Geon;Park, Seong-Hwan;Jeon, Hee Dong;Hong, Seung-Heon
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.68-76
    • /
    • 2019
  • Background: In colorectal cancer (CRC), 40-60% of patients develop metastasis. The epithelial-mesenchymal transition (EMT) is a pivotal and intricate process that increases the metastatic potential of CRC. The aim of this study was to investigate the effect of Korean Red Ginseng extract (RGE) on colorectal metastasis through inhibition of EMT and the metastatic abilities of CRC cells. Methods: To investigate the effect of RGE on the metastatic phenotypes of CRC cells, CT26 and HT29 cells were evaluated by using an adhesion assay, a wound-healing assay, an invasion assay, zymography, and real-time reverse transcription-polymerase chain reaction. Western-blot analysis was conducted to elucidate the molecular mechanisms of RGE, which showed an inhibitory effect on the transforming growth factor-${\beta}1$ ($TGF-{\beta}1$)-induced EMT in HT29 cells. Additionally, the antimetastatic effect of RGE was evaluated in a mouse model of lung metastasis injected with CT26 cells. Results: RGE decreased the adhesion and migration ability of the CT26 cells and TGF-${\beta}1$-treated HT29 cells. The invasion ability was also reduced by RGE treatment through the inhibition of matrix metalloproteinase-9 expression and activity. Moreover, RGE suppressed the TGF-${\beta}1$-induced EMT via TGF-${\beta}1$/Smad-signaling-mediated Snail/E-cadherin expression in HT29 cells and lung tissue in CT26 tumor-bearing mice. Conclusion: Our results demonstrated that RGE inhibited colorectal lung metastasis through a reduction in metastatic phenotypes, such as migration, invasion, and the EMT of CRC cells.

Silencing of COX-2 by RNAi Modulates Epithelial-Mesenchymal Transition in Breast Cancer Cells Partially Dependent on the PGE2 Cascade

  • Cao, Juan;Yang, Xiao;Li, Wen-Tong;Zhao, Chun-Ling;Lv, Shi-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9967-9972
    • /
    • 2014
  • In order to prove whether downregulation of COX-2 (Cyclooxygenase-2) could modulate the epithelial-mesenchymal transition (EMT) of breast cancer, celecoxib and siRNA were respectively used to inhibit COX-2 function and expression in MDA-MB-231 cells. The EMT reversal effect in the RNAi treated group was better than that of the celecoxib group while there were no obvious differences in the medium $PGE_2$ levels between the two groups. The results show that COX-2 pathways may contribute considerably to EMT of breast cancer cells, partially dependent on the PGE2 cascade. Akt2, ZEB2 and Snail were measured to clarify the underlying mechanisms of COX-2 on EMT; COX-2 may modulate EMT of breast cancer by regulating these factors. This finding may be helpful to elucidate the mechanisms of selective COX-2 inhibitor action in EMT modulation in breast cancer.

Cardamonin Suppresses TGF-β1-Induced Epithelial Mesenchymal Transition via Restoring Protein Phosphatase 2A Expression

  • Kim, Eun Ji;Kim, Hyun Ji;Park, Mi Kyung;Kang, Gyeung Jin;Byun, Hyun Jung;Lee, Ho;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.141-148
    • /
    • 2015
  • Epithelial mesenchymal transition (EMT) is the first step in metastasis and implicated in the phenotype of cancer stem cells. Therefore, understanding and controlling EMT, are essential to the prevention and cure of metastasis. In the present study, we examined, by Western blot, reverse transcription polymerase chain reaction (RT-PCR), and confocal microscopy, the effects of cardamonin (CDN) on transforming growth factor-${\beta}1$ (TGF-${\beta}1$)-induced EMT of A549 lung adenocarcinoma cell lines. TGF-${\beta}1$ induced expression of N-cadherin and decreased expression of E-cadherin. CDN suppressed N-cadherin expression and restored E-cadherin expression. Further, TGF-${\beta}1$ induced migration and invasion of A549 cancer cells, which was suppressed by CDN. TGF-${\beta}1$ induced c-Jun N-terminal kinase (JNK) activation during EMT, but CDN blocked it. Protein serine/threonine phosphatase 2A (PP2A) expression in A549 cancer cells was reduced by TGF-${\beta}1$ but CDN restored it. The overall data suggested that CDN suppresses TGF-${\beta}1$-induced EMT via PP2A restoration, making it a potential new drug candidate that controls metastasis.