• Title/Summary/Keyword: Epithelial mesenchymal transition

Search Result 183, Processing Time 0.025 seconds

Anti-metastatic Effect of Taraxacum Officinale Water and Ethanol Extracts Through the Regulation of Epithelial-Mesenchymal Transition in Huh7 Cells (Huh7 간암세포에서 민들레 추출물의 상피간엽전환 억제를 통한 항전이 효과)

  • Hyun-Seo Yoon;Hyun An;Chung-Mu Park
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.59-67
    • /
    • 2023
  • Purpose : Epithelial-to-mesenchymal transition (EMT) is recognized as an important cellular response in metastatic proceduresand characterized by loss of cellular polarity as well as gain of mesenchymal features, which enables migration and invasion. Hepatocellular carcinoma (HCC) is one of the most common primary carcinomas in the liver and exhibits a poor prognosis due to frequent extrahepatic metastasis. Taraxacum officinale has been used for a long time in oriental medicine because of its various pharmacological activitiessuch as anti-rheumatic, anti-inflammatory, antioxidative, and anticarcinogenic activities. In this study, the anti-metastatic activity of T. officinale water extract (TOWE) and ethanol extract (TOEE) was investigated through the regulation of EMT in the Huh7 cells. Methods : The effects of TOWE and TOEE on migratory and invasive activities were investigated by wound healing and in vitro invasion assays. Western blot analysis was also applied to analyze protein expression levels associated with EMT and their upstream transcription factors in Huh7 cells. Results : TOWE and TOEE treatment potently inhibited migration and invasion of Huh7 cells compared to the untreated group. Both extracts treatment inhibited protein expression levels of N-cadherin, matrix metalloproteinase (MMP)-9, and vimentin while E-cadherin was significantly accelerated. In addition, the activated status of transcription factors, Snail, nuclear factor (NF)-κ B, and zinc finger E-box binding homeobox (ZEB)1 was also inhibited with statistical significance. In comparison to both extracts, TOEE more potently attenuated migration, invasion, and EMT markers as well as their transcription factors in Huh7 cells than TOWE, which means that TOEE might possess more functional phytochemicals than TOWE. Conclusion : Consequently, TOWE and TOEEattenuated metastatic activity of hepatocellular carcinoma through the regulation of EMT markers and their transcription factors in Huh7 cells, which means that T. officinale might be a promising strategy for a chemopreventive agent against HCC metastasis.

Isolation of Mesenchymal Stem-like Cells from a Pituitary Adenoma Specimen

  • Shim, Jin-Kyoung;Kang, Seok-Gu;Lee, Ji-Hyun;Chang, Jong Hee;Hong, Yong-Kil
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • Some of the pituitary adenomas are invasive and spread into neighboring tissues. In previous studies, the invasion of pituitary adenomas is thought to be associated with epithelial-mesenchymal transition (EMT). In addition to that, we thought that mesenchymal stem cells (MSCs) exist in relevant microenvironment in pituitary adenoma. However, it has been little known about the existence of MSCs from pituitary adenoma. So we investigated whether mesenchymal stem-like cells (MSLCs) can be isolated from the pituitary adenoma specimen. We isolated and cultured candidate MSLCs from the fresh pituitary adenoma specimen with the same protocols used in culturing bone marrow derived MSCs (BM-MSCs). The cultured candidate MSLCs were analyzed by fluorescence-activated cell sorting (FACS) for surface markers associated with MSCs. Candidate MSLCs were exposed to mesenchymal differentiation conditions to determine the mesenchymal differentiation potential of these cells. To evaluate the tumorigenesis of candidate MSLCs from pituitary adenoma, we implanted these cells into the brain of athymic nude mice. We isolated cells resembling BM-MSCs named pituitary adenoma stroma mesenchymal stem-like cells (PAS-MSLCs). PAS-MSLCs were spindle shaped and had adherent characteristics. FACS analysis identified that the PAS-MSLCs had a bit similar surface markers to BM-MSCs. Isolated cells expressed surface antigen, positive for CD105, CD75, and negative for CD45, NG2, and CD90. We found that these cells were capable of differentiation into adipocytes, osteocytes and chondrocytes. Tumor was not developed in the nude mice brains that were implanted with the PAS-MSLCs. In this study, we showed that MSLCs can be isolated from a pituitary adenoma specimen which is not tumorigenic.

Role of FAK Phosphorylation in Cobalt Chloride-Induced Epithelial-to-Mesenchymal-Like Transition (Cobalt chloride에 의해 유도되는 상피-중간엽 이행에서의 국소부착 단백질의 인산화의 역할 규명)

  • Nam, Ju-Ock
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.286-291
    • /
    • 2011
  • Hypoxia is a common condition found in a wide range of solid tumors and is often associated with metastasis and poor clinical outcomes. In the present study, we found that HIF-$1{\alpha}$ was induced by cobalt chloride (500 ${\mu}M$) treatment on human lung cancer cells, A549 and H460, for 24 hr. However, cobalt chloride (500 ${\mu}M$) did not affect cell proliferation of A549 and H460 in 48 hr. Cobalt chloride (500 ${\mu}M$) additionally induced epithelial-to-mesenchymal-like transition (EMT) such as reduced E-cadherin expression and increased ${\alpha}$-SMA expression. These results were confirmed by immunofluorecence experiment in H460 cells. E-cadherin was localized on the outer cell membrane. However, when the cells were treated with 500 ${\mu}M$ cobalt chloride for 24 hr, diffuse E-cadherin staining was observed, characteristic of a migratory mesenchymal phenotype. We also found that cobalt chloride induced integrin ${\beta}3$ expression and FAK phosphorylation in human lung cancer cells using western blotting and FACS anlaysis. Our data suggest that integrin ${\beta}3$-induced FAK phosphorylation may be developed into target molecules for blocking tumor metastasis.

Sweroside plays a role in mitigating high glucose-induced damage in human renal tubular epithelial HK-2 cells by regulating the SIRT1/NF-κB signaling pathway

  • Xiaodan Ma;Zhixin Guo;Wenhua Zhao;Li Chen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.6
    • /
    • pp.533-540
    • /
    • 2023
  • Sweroside is a natural monoterpene derived from Swertia pseudochinensis Hara. Recently, studies have shown that sweroside exhibits a variety of biological activities, such as anti-inflammatory, antioxidant, and hypoglycemic effects. However, its role and mechanisms in high glucose (HG)-induced renal injury remain unclear. Herein, we established a renal injury model in vitro by inducing human renal tubular epithelial cell (HK-2 cells) injury by HG. Then, the effects of sweroside on HK-2 cell activity, inflammation, reactive oxygen species (ROS) production, and epithelial mesenchymal transition (EMT) were observed. As a result, sweroside treatment ameliorated the viability, inhibited the secretion of inflammatory cytokines (TNF-α, IL-1β, and VCAM-1), reduced the generation of ROS, and inhibited EMT in HK-2 cells. Moreover, the protein expression of SIRT1 was increased and the acetylation of p65 NF-kB was decreased in HK-2 cells with sweroside treatment. More importantly, EX527, an inhibitor of SIRT1, that inactivated SIRT1, abolished the improvement effects of sweroside on HK-2 cells. Our findings suggested that sweroside may mitigate HG-caused injury in HK-2 cells by promoting SIRT1-mediated deacetylation of p65 NF-kB.

Anticancer Activities of the Methanolic Extract from Lemon Leaves in Human Breast Cancer Stem Cells (인간 유방암 줄기세포에서 레몬잎 메탄올 추출물의 항암 효능)

  • Moon, Jeong Yong;Nguyen, Linh Thi Thao;Hyun, Ho Bong;Osman, Ahmed;Cho, Minwhan;Han, Suyeong;Lee, Dong-Sun;Ahn, Kwang Seok
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • The anticancer activity of a methanolic extract from lemon leaves (MLL) was assessed in MCF-7-SC human breast cancer stem cells. MLL induced apoptosis in MCF-7-SC, as evidenced by increased apoptotic body formation, sub-G1 cell population, annexin V-positive cells, Bax/Bcl-2 ratio, as well as proteolytic activation of caspase-9 and caspase-3, and degradation of poly (ADP-ribose) polymerase (PARP) protein. Concomitantly, MLL induced the formation of acidic vesicular organelles, increased LC3-II accumulation, and reduced the activation of Akt, mTOR, and p70S6K, suggesting that MLL initiates an autophagic progression in MCF-7-SC via the Akt/mTOR pathway. Epithelial-mesenchymal transition (EMT), a critical step in the acquisition of the metastatic state, is an attractive target for therapeutic interventions directed against tumor metastasis. At low concentrations, MLL induced anti-metastatic effects on MCF-7-SC by inhibiting the EMT process. Exposure to MLL also led to an increase in the epithelial marker E-cadherin, but decreased protein levels of the mesenchymal markers Snail and Slug. Collectively, this study provides evidence that lemon leaves possess cytotoxicity and anti-metastatic properties. Therefore, MLL may prove to be beneficial as a medicinal plant for alternative novel anticancer drugs and nutraceutical products.

Anti-metastatic mechanism of mountain cultivated wild ginseng in human cancer cell line

  • Jang, S.B.;Lim, C.S.;Jang, J.H.;Kwon, K.R.
    • Journal of Pharmacopuncture
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Objective : Ginseng is one of most widely used herbal medicine. Ginseng showed anti-metastasis activities. However, its molecular mechanisms of action are unknown. So we want to report the wild ginseng repress which plays key roles in neoplastic epithelial-mesenchymal transition process. Methods : Treatment of the human colorectal carcinoma LOVO cells and human gastric carcinoma SNU601 cells with the increased concentrations of cultivated wild ginseng extracts resulted in a gradual decrease in the AXIN2 gene expression. Results : Metastasis-suppressor genes, maspin and nm23 was not affected by the treatment of ginseng extracts in LOVO cells. Moreover, the mountain cultivated wild ginseng or mountain wild ginseng are similar in their inhibitory effects on the expression of AXIN2 gene, but are substantially stronger than cultivated ginseng. Conclusion : We described the novel mechanism of wild ginseng-induced anti-metastasis activity by repressing the expression of AXIN2 gene that plays key roles in epithelial-mesenchymal transition process.

Hydrogen Peroxide Promotes Epithelial to Mesenchymal Transition and Stemness in Human Malignant Mesothelioma Cells

  • Kim, Myung-Chul;Cui, Feng-Ji;Kim, Yongbaek
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3625-3630
    • /
    • 2013
  • Reactive oxygen species (ROS) are known to promote mesothelial carcinogenesis that is closely associated with asbestos fibers and inflammation. Epithelial to mesenchymal cell transition (EMT) is an important process involved in the progression of tumors, providing cancer cells with aggressiveness. The present study was performed to determine if EMT is induced by $H_2O_2$ in human malignant mesothelioma (HMM) cells. Cultured HMM cells were treated with $H_2O_2$, followed by measuring expression levels of EMT-related genes and proteins. Immunohistochemically, TWIST1 expression was confined to sarcomatous cells in HMM tissues, but not in epithelioid cells. Treatment of HMM cells with $H_2O_2$ promoted EMT, as indicated by increased expression levels of vimentin, SLUG and TWIST1, and decreased E-cadherin expression. Expression of stemness genes such as OCT4, SOX2 and NANOG was also significantly increased by treatment of HMM cells with $H_2O_2$. Alteration of these genes was mediated via activation of hypoxia inducible factor 1 alpha (HIF-$1{\alpha}$) and transforming growth factor beta 1 (TGF-${\beta}1$). Considering that treatment with $H_2O_2$ results in excess ROS, the present study suggests that oxidative stress may play a critical role in HMM carcinogenesis by promoting EMT processes and enhancing the expression of stemness genes.

Lipoteichoic Acid Isolated from Staphylococcus aureus Induces Both Epithelial-Mesenchymal Transition and Wound Healing in HaCaT Cells

  • Kim, Seongjae;Kim, Hyeoung-Eun;Kang, Boyeon;Lee, Youn-Woo;Kim, Hangeun;Chung, Dae Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1820-1826
    • /
    • 2017
  • Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is recognized by Toll-like receptor 2, expressed on certain mammalian cell surfaces, initiating signaling cascades that include nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) and mitogen-activated protein kinase. There are many structural and functional varieties of LTA, which vary according to the different species of gram-positive bacteria that produce them. In this study, we examined whether LTA isolated from Staphylococcus aureus (aLTA) affects the expression of junction proteins in keratinocytes. In HaCaT cells, tight junction-related gene expression was not affected by aLTA, whereas adherens junction-related gene expression was modified. High doses of aLTA induced the phosphorylation of extracellular signal-regulated protein kinases 1 and 2, which in turn induced the epithelial-mesenchymal transition (EMT) of HaCaT cells. When cells were given a low dose of aLTA, however, NF-${\kappa}B$ was activated and the total cell population increased. Taken together, our study suggests that LTA from S. aureus infections in the skin may contribute both to the outbreak of EMT-mediated carcinogenesis and to the genesis of wound healing in a dose-dependent manner.

Cardamonin Suppresses TGF-β1-Induced Epithelial Mesenchymal Transition via Restoring Protein Phosphatase 2A Expression

  • Kim, Eun Ji;Kim, Hyun Ji;Park, Mi Kyung;Kang, Gyeung Jin;Byun, Hyun Jung;Lee, Ho;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.141-148
    • /
    • 2015
  • Epithelial mesenchymal transition (EMT) is the first step in metastasis and implicated in the phenotype of cancer stem cells. Therefore, understanding and controlling EMT, are essential to the prevention and cure of metastasis. In the present study, we examined, by Western blot, reverse transcription polymerase chain reaction (RT-PCR), and confocal microscopy, the effects of cardamonin (CDN) on transforming growth factor-${\beta}1$ (TGF-${\beta}1$)-induced EMT of A549 lung adenocarcinoma cell lines. TGF-${\beta}1$ induced expression of N-cadherin and decreased expression of E-cadherin. CDN suppressed N-cadherin expression and restored E-cadherin expression. Further, TGF-${\beta}1$ induced migration and invasion of A549 cancer cells, which was suppressed by CDN. TGF-${\beta}1$ induced c-Jun N-terminal kinase (JNK) activation during EMT, but CDN blocked it. Protein serine/threonine phosphatase 2A (PP2A) expression in A549 cancer cells was reduced by TGF-${\beta}1$ but CDN restored it. The overall data suggested that CDN suppresses TGF-${\beta}1$-induced EMT via PP2A restoration, making it a potential new drug candidate that controls metastasis.