• Title/Summary/Keyword: Epipolar line

Search Result 46, Processing Time 0.037 seconds

MOEPE: Merged Odd-Even PE Architecture for Stereo Matching Hardware (MOEPE: 스테레오 정합 하드웨어를 위한 Merged Odd-Even PE 구조)

  • 한필우;양영일
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1137-1140
    • /
    • 1998
  • In this paper, we propose the new hardware architecture which implements the stereo matching algorithm using the dynamic programming method. The dynamic programming method is used in finding the corresponding pixels between the left image and the right image. The proposed MOEPE(Merged Odd-Even PE) architecture operates in the systolic manner and finds the disparities from the intensities of the pixels on the epipolar line. The number of PEs used in the MOEPE architecture is the number of the range constraint, which reduced the number of the necessary PEs dramatically compared to the traditional method which uses the PEs with the number of pixels on the epipolar line. For the normal method by 25 times. The proposed architecture is modeled with the VHDL code and simulated by the SYNOPSYS tool.

  • PDF

Development of High-resolution 3-D PIV Algorithm by Cross-correlation (고해상도 3차원 상호상관 PIV 알고리듬 개발)

  • Kim, Mi-Young;Choi, Jang-Woon;Lee, Hyun;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.410-416
    • /
    • 2001
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity field of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. In this study, stereo photogrammetty was applied for the 3-D matching of tracer particles. Epipolar line was used to decect the stereo pair. 3-D CFD data was used to estimate algorithm. 3-D position data of the first frame and the second frame was used to find velocity vector. Continuity equation was applied to extract error vector. The algorithm result involved error vecotor of about 0.13 %. In Pentium III 450MHz processor, the calculation time of cross-correlation for 1500 particles needed about 1 minute.

  • PDF

A Frism Mirror Based Stereo Vision : Geometry (프리즘 거울을 이용한 단안렌즈 스테레오비전)

  • 구창운;김충원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.424-427
    • /
    • 1999
  • 적은 연산으로 정확한 정합점을 추출한다는 것은 고전적인 스테레오비전의 가장 큰 단점이다. 이러한 문제점을 해결하기 위해 효과적인 정합점 검출 알고리듬이 많이 연구되고 있으나, 뚜렷한 해결 방법은 없다. 따라서 본 논문에서는 위와 같은 문제점들을 해결 할 수 있는 거울을 이용한 스테레오 비전 시스템을 제안한다. 제안된 시스템은 보다 저렴한 가격으로 스테레오 시스템을 구추할 수 있으며, 한 대의 카메라만을 사용하기 때문에 칼리브레이션 과정을 간략화 할 수 있다. 거울에 반사된 오른쪽과 왼쪽 영상은 거울의 각도에 의해서 동일 이미지 평면의 좌우에 촬상이 된다. 같은 이미지 평면에 촬상된 두 영상의 epipolar line은 x축과 평행한 scan line을 갖는다. 따라서 본 논문에서 제안한 시스템은 정합점을 추출하기 위한 epipolar 검출 알고리듬이 필요하지 않고 한 대의 카메라만을 사용하기 때문에 칼리브레이션 과정을 간략화 할 수 있다. 또한 동일한 이미지 평면에 오른쪽 이미지와 왼쪽 이미지가 촬상되기 때문에 두 영상의 명암도 차이를 보정하기 위한 정규화 작업도 필요하지 않다. 위와 같은 장점은 고전적인 스테레오 비전에서 발생되는 문제점들을 효과적으로 보완한다. 본 논문에서 제안된 시스템에 대한 프로토타입을 제작하여 실험하였으며, 그 결과를 제시하였다.

  • PDF

Analysis on 3D Positioning Precision Using Mobile Mapping System Images in Photograrmmetric Perspective (사진측량 관점에서 차량측량시스템 영상을 이용한 3차원 위치의 정밀도 분석)

  • 조우석;황현덕
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.431-445
    • /
    • 2003
  • In this paper, we experimentally investigated the precision of 3D positioning using 4S-Van images in photograrmmetric perspective. The 3D calibration target was built over building facade outside and was captured separately by two CCD cameras installed in 4S-Van. After then, we determined the interior orientation parameter for each CCD camera through self-calibration technique. With the interior orientation parameter computed, the bundle adjustment was performed to obtain the exterior orientation parameters simultaneously for two CCD cameras using calibration target image and object coordinates. The reverse lens distortion coefficients were computed and acquired by least squares method so as to introduce lens distortion into epipolar line. It was shown that the reverse lens distortion coefficients could transform image coordinates into lens distorted image coordinates within about 0.5 pixel. The proposed semi-automatic matching scheme incorporated with lens distorted epipolar line was implemented with scene images captured by 4S-Van in moving. The experimental results showed that the precision of 3D positioning from 4S-Van images in photograrmmetric perspective is within 2cm in the range of 20m from the camera.

Automatic Building Reconstruction with Satellite Images and Digital Maps

  • Lee, Dong-Cheon;Yom, Jae-Hong;Shin, Sung-Woong;Oh, Jae-Hong;Park, Ki-Surk
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.537-546
    • /
    • 2011
  • This paper introduces an automated method for building height recovery through the integration of high-resolution satellite images and digital vector maps. A cross-correlation matching method along the vertical line locus on the Ikonos images was deployed to recover building heights. The rational function models composed of rational polynomial coefficients were utilized to create a stereopair of the epipolar resampled Ikonos images. Building footprints from the digital maps were used for locating the vertical guideline along the building edges. The digital terrain model (DTM) was generated from the contour layer in the digital maps. The terrain height derived from the DTM at each foot of the buildings was used as the starting location for image matching. At a preset incremental value of height along the vertical guidelines derived from vertical line loci, an evaluation process that is based on the cross-correlation matching of the images was carried out to test if the top of the building has reached where maximum correlation occurs. The accuracy of the reconstructed buildings was evaluated by the comparison with manually digitized 3D building data derived from aerial photographs.

Incorporation of Scene Geometry in Least Squares Correlation Matching for DEM Generation from Linear Pushbroom Images

  • Kim, Tae-Jung;Yoon, Tae-Hun;Lee, Heung-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.182-187
    • /
    • 1999
  • Stereo matching is one of the most crucial parts in DEM generation. Naive stereo matching algorithms often create many holes and blunders in a DEM and therefore a carefully designed strategy must be employed to guide stereo matching algorithms to produce “good” 3D information. In this paper, we describe one such a strategy designed by the use of scene geometry, in particular, the epipolarity for generation of a DEM from linear pushbroom images. The epipolarity for perspective images is a well-known property, i.e., in a stereo image pair, a point in the reference image will map to a line in the search image uniquely defined by sensor models of the image pair. This concept has been utilized in stereo matching by applying epipolar resampling prior to matching. However, the epipolar matching for linear pushbroom images is rather complicated. It was found that the epipolarity can only be described by a Hyperbola- shaped curve and that epipolar resampling cannot be applied to linear pushbroom images. Instead, we have developed an algorithm of incorporating such epipolarity directly in least squares correlation matching. Experiments showed that this approach could improve the quality of a DEM.

  • PDF

A New Intermediate View Reconstruction Scheme based-on Stereo Image Rectification Algorithm (스테레오 영상 보정 알고리즘에 기반한 새로운 중간시점 영상합성 기법)

  • 박창주;고정환;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.632-641
    • /
    • 2004
  • In this paper, a new intermediate view reconstruction method employing a stereo image rectification algorithm by which an uncalibrated input stereo image can be transformed into the calibrated one is suggested and its performance is analyzed. In the proposed method, feature point are extracted from the stereo image pair though detection of the corners and similarities between each pixel of the stereo image. And then, using these detected feature points, the moving vectors between stereo image and the epipolar line is extracted. Finally, the input stereo image is rectified by matching the extracted epipolar line between the stereo image in the horizontal direction and intermediate views are reconstructed by using these rectified stereo images. From some experiments on synthesis of the intermediate views by using three kinds of stereo image; a CCETT's stereo image of 'Man' and two stereo images of 'Face' & 'Car' captured by real camera, it is analyzed that PSNRs of the intermediate views reconstructed from the calibrated image by using the proposed rectification algorithm are improved by 2.5㏈ for 'Man', 4.26㏈ for 'Pace' and 3.85㏈ for 'Car' than !hose of the uncalibrated ones. This good experimental result suggests a possibility of practical application of the unposed stereo image rectification algorithm-based intermediate view reconstruction view to the uncalibrated stereo images.

Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation (해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용)

  • Kim Mi-Young;Choi Jang-Woon;Lee Hyun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF

Development of 3-D Volume PIV (3차원 Volume PIV의 개발)

  • Choi, Jang-Woon;Nam, Koo-Man;Lee, Young-Ho;Kim, Mi-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.726-735
    • /
    • 2003
  • A Process of 3-D Particle image velocimetry, called here, as '3-D volume PIV' was developed for the full-field measurement of 3-D complex flows. The present method includes the coordinate transformation from image to camera, calibration of camera by a calibrator based on the collinear equation, stereo matching of particles by the approximation of the epipolar lines, accurate calculation of 3-D particle positions, identification of velocity vectors by 3-D cross-correlation equation, removal of error vectors by a statistical method followed by a continuity equation criterior, and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis 3-D flow field, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An Experimental system was also used for the application of the proposed method. Three analog CCD camera and a Halogen lamp illumination were adopted to capture the wake flow behind a bluff obstacle. Among 200 effective particle s in two consecutive frames, 170 vectors were obtained averagely in the present study.