• Title/Summary/Keyword: Epipolar Images

Search Result 78, Processing Time 0.03 seconds

Analysis on 3D Positioning Precision Using Mobile Mapping System Images in Photograrmmetric Perspective (사진측량 관점에서 차량측량시스템 영상을 이용한 3차원 위치의 정밀도 분석)

  • 조우석;황현덕
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.431-445
    • /
    • 2003
  • In this paper, we experimentally investigated the precision of 3D positioning using 4S-Van images in photograrmmetric perspective. The 3D calibration target was built over building facade outside and was captured separately by two CCD cameras installed in 4S-Van. After then, we determined the interior orientation parameter for each CCD camera through self-calibration technique. With the interior orientation parameter computed, the bundle adjustment was performed to obtain the exterior orientation parameters simultaneously for two CCD cameras using calibration target image and object coordinates. The reverse lens distortion coefficients were computed and acquired by least squares method so as to introduce lens distortion into epipolar line. It was shown that the reverse lens distortion coefficients could transform image coordinates into lens distorted image coordinates within about 0.5 pixel. The proposed semi-automatic matching scheme incorporated with lens distorted epipolar line was implemented with scene images captured by 4S-Van in moving. The experimental results showed that the precision of 3D positioning from 4S-Van images in photograrmmetric perspective is within 2cm in the range of 20m from the camera.

New Method of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Morita, Masahiko;Shigeru, Uchikado;Yasuhiro, Osa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.41.4-41
    • /
    • 2002
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. Here we consider two coordinate systems, the world coordinate system and the camera coordinate one and we use a pinhole camera model as the camera one. First of all, the essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. And these plays an important role in designing visual servoing in the later chapters. Statement of the problem is giver. Provided two a priori...

  • PDF

On Design of Visual Servoing using an Uncalibrated Camera and a Calibrated Robot

  • Uchikado, Shigeru;Morita, Masahiko;Osa, Yasuhiro;Mabuchi, Tesuo;Tanya, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.2-23
    • /
    • 2001
  • In this paper we deal with visual servoing that can control a robot arm with a camera using information of images only, without estimating 3D position and rotation of the robot arm. Here it is assumed that the robot arm is calibrated and the camera is uncalibrated. We use a pinhole camera model as the camera one. The essential notion can be show, that is, epipolar geometry, epipole, epipolar equation, and epipolar constrain. These play an important role in designing visual servoing. For easy understanding of the proposed method we first show a design in case of the calibrated camera. The design is constructed by 4 steps and the directional motion of the robot arm is fixed only to a constant direction. This means that an estimated epipole denotes the direction, to which the robot arm translates in 3D space, on the image plane.

  • PDF

Epipolar Resampling from Kompsat-2 and Kompsat-3 (아리랑 위성 2호와 3호를 이용한 이종 영상 간 에피폴라 영상 생성)

  • Song, Jeong-Heon;Oh, Jae-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.156-166
    • /
    • 2014
  • As of 2014, KARI (Korea Aerospace Research Institute) operates two high-resolution satellites such as Kompsat-2 and Kompsat-3. Kompsat-3 has capability of in-track stereo images acquisition but it is quite limited because the stereo mode lowers the spatial coverage in a trajectory. In this paper we analyze the epipolar geometry from the heterogeneous Kompsat-2 and Kompsat-3 image combination to epipolar resample them for 3D spatial data acquisition. The analysis was carried out using the piecewise approach with RPCs (Rational Polynomial Coefficients) and the result showed the parabolic epipolar curve pattern. We also concluded that the third order polynomial transformation is required for epipolar image resampling. The resampled image pair showed 1 pixel level of y-parallax and can be used for 3D display and digitizing.

A Robust Correspondence Using the Epipolar Geometry from Two Un-calibrated Images (두 장의 비교정된 영상으로부터 에피폴라 기하학을 이용한 강건한 대응점 추출)

  • Yoon, Yong-In;Oh, In-Whan;Doo, Kyoung-Soo;Choi, Jong-Soo;Kim, Jin-Tae;Song, Ho-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.535-541
    • /
    • 2006
  • This paper proposes a robust method to find corresponding points for un-calibrated stereo images by using a classical method based on the epipolar constraints and motion flows. If we detect matching for the only epipolar geometry, the problem is very high. Therefore, in order to nod an initial set of matches, we use the correlation technique and then exploit motion vectors to remove mismatches among matching candidates. Then, the epipolar geometry can be accurately estimated using a veil adapted criterion and computed the fundamental matrix. The proposed algorithm has been widely tested and works remarkably well in various scenes, evenly, with many repetitive patterns. The results show that the proposed algorithm is better than the conventional.

Using Contour Matching for Omnidirectional Camera Calibration (투영곡선의 자동정합을 이용한 전방향 카메라 보정)

  • Hwang, Yong-Ho;Hong, Hyun-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.125-132
    • /
    • 2008
  • Omnidirectional camera system with a wide view angle is widely used in surveillance and robotics areas. In general, most of previous studies on estimating a projection model and the extrinsic parameters from the omnidirectional images assume corresponding points previously established among views. This paper presents a novel omnidirectional camera calibration based on automatic contour matching. In the first place, we estimate the initial parameters including translation and rotations by using the epipolar constraint from the matched feature points. After choosing the interested points adjacent to more than two contours, we establish a precise correspondence among the connected contours by using the initial parameters and the active matching windows. The extrinsic parameters of the omnidirectional camera are estimated minimizing the angular errors of the epipolar plane of endpoints and the inverse projected 3D vectors. Experimental results on synthetic and real images demonstrate that the proposed algorithm obtains more precise camera parameters than the previous method.

Motion Analysis on the Wavelet-based Epipolar-Plane Images (웨이브릿 기반의 에피폴라 평면 영상에서의 움직임 분석)

  • 장재건;이형석;박지훈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.374-376
    • /
    • 1999
  • 본 논문은 연속적인 영상에서 움직이는 물체의 광류를 예측하는데 있어서 웨이브릿과 에피폴라 평면(Epipolar-Plane Images, EPI)을 사용하여 물체의 움직임을 분석하는 기법을 제안한다. 하나의 영상에서 물체의 특징을 찾는데 2차 웨이브릿 변환이 사용되고 있으나 연적인 영상에 대한 분석에서 시간에 대한 또 하나의 변환을 해 줌으로서 움직이는 물체의 정보를 얻어낼 수 있다. 3차 웨이브릿 변환에서 유도된 데이터를 가지고 만들어지는 에피폴라 평면은 움직이는 물체의 광류를 예측하는데 있어서 기존의 방법보다 시간적으로 절약을 할 수 있다. 특히 서로 다른 방향에 대한 민감성을 보여 주는 웨이브릿 계수들은 움직이는 물체의 광류 예측에 많은 도움을 주고 있다. EPI 분석에서는 물체가 깊이 방향으로 움직이는 경우에도 물체의 각 에지들(edges)의 기울기를 분석함으로서 깊이 방향의 광류를 측정할 수 있다. 본 논문에서 제시한 3차 웨이브릿 변환과 EPI 기법의 조합으로 분석된 실험 결과와 그 전 연구들과의 비교가 마지막 부분에 서술되었다.

  • PDF

Epipolar Image Resampling from Kompsat-3 In-track Stereo Images (아리랑3호 스테레오 영상의 에피폴라 기하 분석 및 영상 리샘플링)

  • Oh, Jae Hong;Seo, Doo Chun;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.455-461
    • /
    • 2013
  • Kompsat-3 is an optical high-resolution earth observation satellite launched in May 2012. The AEISS sensor of the Korean satellite provides 0.7m panchromatic and 2.8m multi-spectral images with 16.8km swath width from the sun-synchronous near-circular orbit of 685km altitude. Kompsat-3 is more advanced than Kompsat-2 and the improvements include better agility such as in-track stereo acquisition capability. This study investigated the characteristic of the epipolar curves of in-track Kompsat-3 stereo images. To this end we used the RPCs(Rational Polynomial Coefficients) to derive the epipolar curves over the entire image area and found out that the third order polynomial equation is required to model the curves. In addition, we could observe two different groups of curve patterns due to the dual CCDs of AEISS sensor. From the experiment we concluded that the third order polynomial-based RPCs update is required to minimize the sample direction image distortion. Finally we carried out the experiment on the epipolar resampling and the result showed the third order polynomial image transformation produced less than 0.7 pixels level of y-parallax.

A New Intermediate View Reconstruction Scheme based-on Stereo Image Rectification Algorithm (스테레오 영상 보정 알고리즘에 기반한 새로운 중간시점 영상합성 기법)

  • 박창주;고정환;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.632-641
    • /
    • 2004
  • In this paper, a new intermediate view reconstruction method employing a stereo image rectification algorithm by which an uncalibrated input stereo image can be transformed into the calibrated one is suggested and its performance is analyzed. In the proposed method, feature point are extracted from the stereo image pair though detection of the corners and similarities between each pixel of the stereo image. And then, using these detected feature points, the moving vectors between stereo image and the epipolar line is extracted. Finally, the input stereo image is rectified by matching the extracted epipolar line between the stereo image in the horizontal direction and intermediate views are reconstructed by using these rectified stereo images. From some experiments on synthesis of the intermediate views by using three kinds of stereo image; a CCETT's stereo image of 'Man' and two stereo images of 'Face' & 'Car' captured by real camera, it is analyzed that PSNRs of the intermediate views reconstructed from the calibrated image by using the proposed rectification algorithm are improved by 2.5㏈ for 'Man', 4.26㏈ for 'Pace' and 3.85㏈ for 'Car' than !hose of the uncalibrated ones. This good experimental result suggests a possibility of practical application of the unposed stereo image rectification algorithm-based intermediate view reconstruction view to the uncalibrated stereo images.

An Epipolar Rectification for Object Segmentation (객체분할을 위한 에피폴라 Rectification)

  • Jeong, Seung-Do;Kang, Sung-Suk;CHo, Jung-Won;Choi, Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.83-91
    • /
    • 2004
  • An epipolar rectification is the process of transforming the epipolar geometry of a pair of images into a canonical form. This is accomplished by applying a homography to each image that maps the epipole to a predetermined point. In this process, rectified images transformed by homographies must be satisfied with the epipolar constraint. These homographies are not unique, however, we find out homographies that are suited to system's purpose by means of an additive constraint. Since the rectified image pair be a stereo image pair, we are able to find the disparity efficiently. Therefore, we are able to estimate the three-dimensional information of objects within an image and apply this information to object segmentation. This paper proposes a rectification method for object segmentation and applies the rectification result to the object segmentation. Using color and relative continuity of disparity for the object segmentation, the drawbacks of previous segmentation method, which are that the object is segmented to several region because of having different color information or another object is merged into one because of having similar color information, are complemented. Experimental result shows that the disparity of result image of proposed rectification method have continuity about unique object. Therefore we have confirmed that our rectification method is suitable to the object segmentation.