• Title/Summary/Keyword: Epigenetic Cancer Therapy

Search Result 30, Processing Time 0.025 seconds

Cloning of the Setd1b gene of Mus musculus, a novel histone methyl transferase target in the epigenetic therapy of cancers

  • Morishita, Masayo;Cho, Minju;Ryu, Juhee;Mevius, Damiaan E.H.F.;Di Luccio, Eric
    • Current Research on Agriculture and Life Sciences
    • /
    • v.28
    • /
    • pp.63-68
    • /
    • 2010
  • The epigenetic therapy of cancers is emerging as an effective and valuable approach to both chemotherapy and the chemoprevention of cancer. The utilization of epigenetic targets that include histone methyltransferase (HMTase), Histone deacetylatase, and DNA methyltransferase, are emerging as key therapeutic targets. SET containing proteins such as the HMTase Setd1b has been found significantly amplified in cancerous cells. In order to shed some light on the histone methyl transferase family, we cloned the Setd1b gene from Mus musculus and build a collection of vectors for recombinant protein expression in E.coli that will pave the way for further structural biology studies. We prospect the role of the Setd1b pathway in cancer therapy and detail its unique value for designing novel anti-cancer epigenetic-drugs.

  • PDF

Use of DNA Methylation for Cancer Detection and Molecular Classification

  • Zhu, Jingde;Yao, Xuebiao
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.135-141
    • /
    • 2007
  • Conjugation of the methyl group at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3' sequence (DNA methylation) is the best studied epigenetic mechanism, which acts together with other epigenetic entities: histone modification, chromatin remodeling and microRNAs to shape the chromatin structure of DNA according to its functional state. The cancer genome is frequently characterized by hypermethylation of specific genes concurrently with an overall decrease in the level of 5-methyl cytosine, the pathological implication of which to the cancerous state has been well established. While the latest genome-wide technologies have been applied to classify and interpret the epigenetic layer of gene regulation in the physiological and disease states, the epigenetic testing has also been seriously explored in clinical practice for early detection, refining tumor staging and predicting disease recurrence. This critique reviews the latest research findings on the use of DNA methylation in cancer diagnosis, prognosis and staging/classification.

RNA Interference: a Promising Therapy for Gastric Cancer

  • Felipe, Aledson Vitor;Oliveira, Juliana de;Chang, Paula Yun Joo;Moraes, Andrea Aparecida de Fatima Souza;Silva, Tiago Donizetti da;Tucci-Viegas, Vanina Monique;Forones, Nora Manoukian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5509-5515
    • /
    • 2014
  • Gastric cancer (GC) remains a virtually incurable disease when metastatic and requires early screening tools for detection of early tumor stages. Therefore, finding effective strategies for prevention or recurrence of GC has become a major overall initiative. RNA-interference (RNAi) is an innovative technique that can significantly regulate the expression of oncogenes involved in gastric carcinogenesis, thus constituting a promising epigenetic approach to GC therapy. This review presents recent advances concerning the promising biomolecular mechanism of RNAi for GC treatment.

Combinatorial Effect of 5-FU and Epigenetic Silencing Repressors in Human Colorectal Cancer Cells (인체대장암 세포에서 후성적 유전자 불활성화 저해제와 5-Fluorouracil의 병용효과분석)

  • Kim Mi-Young;Son Jung-Kyu;Lee Suk-Kyeong;Ku Hyo-Jeong
    • YAKHAK HOEJI
    • /
    • v.49 no.6
    • /
    • pp.511-517
    • /
    • 2005
  • Low sensitivity to anticancer drugs such as 5-fluorouracil (5-FU) has been associated with decreased expression of genes involved in cell proliferation, apoptosis and metastasis. Recently, it has been shown that the expression levels of some of these genes are reduced by transcription inhibition due to epigenetic silencing on CpG islands. Therefore, epigenetic therapy has been proposed, where epigenetic silencing is repressed with DNA methyltransferase (DNMT) inhibitors and histone deacetylase (HDAC) inhibitors alone or in combination with other chemotherapeutic agents. The aim of our study was to evaluate the combination effect of 5-FU and its association with the status of epigenetic silencing using methylation-specific PCR of $p14^{ARF}$ when given with S-aza-2'-deoxycytidine (5-aza-dC), a DNMT inhibitor and depsipeptide, an HDAC inhibitor in DLD-1 human colorectal cancer cells. The combination of 5-aza-dC with depsipeptide showed a synergism and induced unmethylation of $p14^{ARF}$. However, triplet combination of 5-aza-dc/depsipeptide and 5-FU resulted in antagonistic effects and abrogated unmethylation of $p14^{ARF}$. These results suggest that unfavorable interaction of 5-aza-dC/depsipeptide with 5-FU in DLD-1 cells may be related with the failure in repression of epigenetic silencing, which warrants further investigation.

Recent Progress in Triple Negative Breast Cancer Research

  • Mouh, Fatima Zahra;El Mzibri, Mohammed;Slaoui, Meriem;Amrani, Mariam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1595-1608
    • /
    • 2016
  • Triple-negative breast cancer (TNBC) is defined as a type of breast carcinoma that is negative for expression of oestrogene and progesterone hormone receptors (ER, PR) and HER2. This form of breast cancer is marked by its aggressiveness, low survival rate and lack of specific therapies. Recently, important molecular characteristics of TNBC have been highlighted and led to the identification of some biomarkers that could be used in diagnosis, as therapeutic targets or to assess the prognosis. In this review, we summarize recent progress in TNBC research focusing on the genetic and epigenetic alterations of TNBC and the potential use of these biomarkers in the targeted therapy for better management of TNBC.

Tyrosine Kinase Inhibitors in Ph+ Chronic Myeloid Leukemia Therapy: a Review

  • Shah, Krupa;Parikh, Sonia;Rawal, Rakesh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3025-3033
    • /
    • 2016
  • Chronic myeloid leukaemia (CML) is a clonal myeloproliferative hematopoietic stem cell disorder. Deregulated BCR-ABL fusion tyrosine kinase activity is the main cause of CML disease pathogenesis, making BCR-ABL an ideal target for inhibition. Current tyrosine kinase inhibitors (TKIs) designed to inhibit BCR-ABL oncoprotein activity, have completely transformed the prognosis of CML. Interruption of TKI treatment leads to minimal residual disease reside (MRD), thought to reside in TKI-insensitive leukaemia stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML either as small molecule master TKIs or phytopharmaceuticals derived from nature to achieve chronic molecular remission. This review outlines the past, present and future therapeutic approaches for CML including coverage of relevant mechanisms, whether ABL dependent or independent, and epigenetic factors responsible for developing resistance against TKIs. Appearance of mutant clones along the course of therapy either pre-existing or induced due to therapy is still a challenge for the clinician. A proposed in-vitro model of generating colony forming units from CML stem cells derived from diagnostic samples seems to be achievable in the era of high throughput technology which can take care of single cell genomic profiling.

Transcriptome analysis of iBET-151, a BET inhibitor alone and in combination with paclitaxel in gastric cancer cells

  • Kang, Sun Kyoung;Bae, Hyun Joo;Kwon, Woo Sun;Che, Jingmin;Kim, Tae Soo;Chung, Hyun Cheol;Rha, Sun Young
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.37.1-37.11
    • /
    • 2020
  • BET inhibitor, as an epigenetic regulator inhibitor, reduces the expression of oncogenes such as Myc and Bcl-2, which affects cancer growth and development. However, it has modest activity because of the narrow therapeutic index. Therefore, combination therapy is necessary to increase the anti-tumor effect. Paclitaxel, an anti-mitotic inhibitor, is used as second-line therapy for gastric cancer (GC) as a monotherapy or combination. In this study, we performed RNA sequencing of GC cells treated with iBET-151 and/or paclitaxel to identify the differentially expressed genes associated with possible mechanisms of synergistic effect. We also performed Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses to determine the most enriched terms and pathways of upregulated and downregulated genes. We found 460 genes in which iBET-151 and paclitaxel combination treatment changed more than single-treatment or no-treatment. Thus, additional functional studies are needed, but our results provide the first evidence of the synergistic effect between iBET-151 and paclitaxel in regulating the transcriptome of GC cells.

RNA Interference as a Plausible Anticancer Therapeutic Tool

  • Ramachandran, Puthucode Venkatakrishnan;Ignacimuthu, Savarimuthu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2445-2452
    • /
    • 2012
  • RNA interference has created a breakthrough in gene silencing technology and there is now much debate on the successful usage of RNAi based methods in treating a number of debilitating diseases. Cancer is often regarded as a result of mutations in genomic DNA resulting in faulty gene expression. The occurrence of cancer can also be influenced by epigenetic irregularities in the chromatin structure which leads to alterations and mutations in DNA resulting in cancer cell formation. A number of therapeutic approaches have been put forth to treat cancer. Anti cancer therapy often involves chemotherapy targeting all the cells in common, whereby both cancer cells as well as normal cells get affected. Hence RNAi technology has potential to be a better therapeutic agent as it is possible to deactivate molecular targets like specific mutant genes. This review highlights the successful use of RNAi inducers against different types of cancer, thereby paving the way for specific therapeutic medicines.

Roles of PTEN (Phosphatase and Tensin Homolog) in Gastric Cancer Development and Progression

  • Xu, Wen-Ting;Yang, Zhen;Lu, Nong-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • Gastric cancer is highly invasive, aggressively malignant, and amongst the most prevalent of all forms of cancer. Despite improved management strategies, early stage diagnosis of gastric cancer and accurate prognostic assessment is still lacking. Several recent reports have indicated that the pathogenesis of gastric cancer involves complex molecular mechanisms and multiple genetic and epigenetic alterations in oncogenes and tumor suppressor genes. Functional inactivation of the tumor suppressor protein PTEN (Phosphatase and Tensin Homolog) has been detected in multiple cases of gastric cancer, and already shown to be closely linked to the development, progression and prognosis of the disease. Inactivation of PTEN can be attributed to gene mutation, loss of heterozygosity, promoter hypermethylation, microRNA- mediated regulation of gene expression, and post-translational phosphorylation. PTEN is also involved in mechanisms regulating tumor resistance to chemotherapy. This review provides a comprehensive analysis of PTEN and its roles in gastric cancer, and emphasizes its potential benefits in early diagnosis and gene therapy-based treatment strategies.

Recovery of Genes Epigenetically Altered by the Histone Deacetylase Inhibitor Scriptaid and Demethylating Agent 5-Azacytidine in Human Leukemia Cells

  • Park, Eun-Kyung;Jeon, Eun-Hyung;Kim, In-Ho;Park, Seon-Yang
    • Genomics & Informatics
    • /
    • v.8 no.4
    • /
    • pp.185-193
    • /
    • 2010
  • Histone deacetylation and demethylation are epigenetic mechanisms implicated in cancer. Studies regarding the role of modulation of gene expression utilizing the histone deacetylase inhibitor scriptaid and the demethylating agent 5-azacytidine in HL-60 leukemia cells have been limited. We studied the possibility of recovering epigenetically silenced genes by scriptaid and 5-azacytidine in human leukemia cells by DNA microarray analysis. The first group was leukemia cells that were cultured with 5-azacytidine. The second group was cultured with scriptaid. The other group was cultured with both agents. Two hundred seventy newly developed genes were expressed after the combination of 5-azacytidine and scriptaid. Twenty-nine genes were unchanged after the combination treatment of 5-azacytidine and scriptaid. Among the 270 genes, 13 genes were differed significantly from the control. HPGD, CPA3, CEACAM6, LOC653907, ETS1, RAB37, PMP22, FST, FOXC1, and CCL2 were up-regulated, and IGLL3, IGLL1, and ASS1 were down-regulated. Eleven genes associated with oncogenesis were found among the differentially expressed genes: ETS1, ASCL2, BTG2, BTG1, SLAMF6, CDKN2D, RRAS, RET, GIPC1, MAGEB, and RGL4. We report the results of our leukemia cell microarray profiles after epigenetic combination therapy with the hope that they are the starting point of selectively targeted epigenetic therapy.