• 제목/요약/키워드: Epigenetic

검색결과 431건 처리시간 0.028초

Genetic and Epigenetic of ART

  • Palenno, Gianpiero D.
    • 대한생식의학회:학술대회논문집
    • /
    • 대한불임학회 2006년도 The 5th Biannual Meeting of Pacific Rim Society for Fertility and Sterility
    • /
    • pp.82-86
    • /
    • 2006
  • PDF

Recovery of Genes Epigenetically Altered by the Histone Deacetylase Inhibitor Scriptaid and Demethylating Agent 5-Azacytidine in Human Leukemia Cells

  • Park, Eun-Kyung;Jeon, Eun-Hyung;Kim, In-Ho;Park, Seon-Yang
    • Genomics & Informatics
    • /
    • 제8권4호
    • /
    • pp.185-193
    • /
    • 2010
  • Histone deacetylation and demethylation are epigenetic mechanisms implicated in cancer. Studies regarding the role of modulation of gene expression utilizing the histone deacetylase inhibitor scriptaid and the demethylating agent 5-azacytidine in HL-60 leukemia cells have been limited. We studied the possibility of recovering epigenetically silenced genes by scriptaid and 5-azacytidine in human leukemia cells by DNA microarray analysis. The first group was leukemia cells that were cultured with 5-azacytidine. The second group was cultured with scriptaid. The other group was cultured with both agents. Two hundred seventy newly developed genes were expressed after the combination of 5-azacytidine and scriptaid. Twenty-nine genes were unchanged after the combination treatment of 5-azacytidine and scriptaid. Among the 270 genes, 13 genes were differed significantly from the control. HPGD, CPA3, CEACAM6, LOC653907, ETS1, RAB37, PMP22, FST, FOXC1, and CCL2 were up-regulated, and IGLL3, IGLL1, and ASS1 were down-regulated. Eleven genes associated with oncogenesis were found among the differentially expressed genes: ETS1, ASCL2, BTG2, BTG1, SLAMF6, CDKN2D, RRAS, RET, GIPC1, MAGEB, and RGL4. We report the results of our leukemia cell microarray profiles after epigenetic combination therapy with the hope that they are the starting point of selectively targeted epigenetic therapy.

Pre-Natal Epigenetic Influences on Acute and Chronic Diseases Later in Life, such as Cancer: Global Health Crises Resulting from a Collision of Biological and Cultural Evolution

  • Trosko, James E.
    • Preventive Nutrition and Food Science
    • /
    • 제16권4호
    • /
    • pp.394-407
    • /
    • 2011
  • Better understanding of the complex factors leading to human diseases will be necessary for both long term prevention and for managing short and long-term health problems. The underlying causes, leading to a global health crisis in both acute and chronic diseases, include finite global health care resources for sustained healthy human survival, the population explosion, increased environmental pollution, decreased clean air, water, food distribution, diminishing opportunities for human self-esteem, increased median life span, and the interconnection of infectious and chronic diseases. The transition of our pre-human nutritional requirements for survival to our current culturally-shaped diet has created a biologically-mismatched human dietary experience. While individual genetic, gender, and developmental stage factors contribute to human diseases, various environmental and culturally-determined factors are now contributing to both acute and chronic diseases. The transition from the hunter-gatherer to an agricultural-dependent human being has brought about a global crisis in human health. Initially, early humans ate seasonally-dependent and calorically-restricted foods, during the day, in a "feast or famine" manner. Today, modern humans eat diets of caloric abundance, at all times of the day, with foods of all seasons and from all parts of the world, that have been processed and which have been contaminated by all kinds of factors. No longer can one view, as distinct, infectious agent-related human acute diseases from chronic diseases. Moreover, while dietary and environmental chemicals could, in principle, cause disease pathogenesis by mutagenic and cytotoxic mechanisms, the primary cause is via "epigenetic", or altered gene expression, modifications in the three types of cells (e.g., adult stem; progenitor and terminally-differentiated cells of each organ) during all stages of human development. Even more significantly, alteration in the quantity of adult stem cells during early development by epigenetic chemicals could either increase or decrease the risk to various stem cell-based diseases, such as cancer, later in life. A new concept, the Barker hypothesis, has emerged that indicates pre-natal maternal dietary exposures can now affect diseases later in life. Examples from the studies of the atomic bomb survivors should illustrate this insight.

5-Aza-2'-deoxycytidine Induces Hepatoma Cell Apoptosis via Enhancing Methionine Adenosyltransferase 1A Expression and Inducing S-Adenosylmethionine Production

  • Liu, Wei-Jun;Ren, Jian-Guo;Li, Ting;Yu, Guo-Zheng;Zhang, Jin;Li, Chang-Sheng;Liu, Zhi-Su;Liu, Quan-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6433-6438
    • /
    • 2013
  • In hepatocellular cancer (HCC), lack of response to chemotherapy and radiation treatment can be caused by a loss of epigenetic modifications of cancer cells. Methionine adenosyltransferase 1A is inactivated in HCC and may be stimulated by an epigenetic change involving promoter hypermethylation. Therefore, drugs releasing epigenetic repression have been proposed to reverse this process. We studied the effect of the demethylating reagent 5-aza-2'-deoxycitidine (5-Aza-CdR) on MAT1A gene expression, DNA methylation and S-adenosylmethionine (SAMe) production in the HCC cell line Huh7. We found that MAT1A mRNA and protein expression were activated in Huh7 cells with the treatment of 5-Aza-CdR; the status of promoter hypermethylation was reversed. At the same time, MAT2A mRNA and protein expression was significantly reduced in Huh7 cells treated with 5-Aza-CdR, while SAMe production was significantly induced. However, 5-Aza-CdR showed no effects on MAT2A methylation. Furthermore, 5-Aza-CdR inhibited the growth of Huh7 cells and induced apoptosis and through down-regulation of Bcl-2, up-regulation of Bax and caspase-3. Our observations suggest that 5-Aza-CdR exerts its anti-tumor effects in Huh7 cells through an epigenetic change involving increased expression of the methionine adenosyltransferase 1A gene and induction of S-adenosylmethionine production.

Epigenetic modification of retinoic acid-treated human embryonic stem cells

  • Cheong, Hyun-Sub;Lee, Han-Chul;Park, Byung-Lae;Kim, Hye-Min;Jang, Mi-Jin;Han, Yong-Mahn;Kim, Seun-Young;Kim, Yong-Sung;Shin, Hyoung-Doo
    • BMB Reports
    • /
    • 제43권12호
    • /
    • pp.830-835
    • /
    • 2010
  • Epigenetic modification of the genome through DNA methylation is the key to maintaining the differentiated state of human embryonic stem cells (hESCs), and it must be reset during differentiation by retinoic acid (RA) treatment. A genome-wide methylation/gene expression assay was performed in order to identify epigenetic modifications of RA-treated hESCs. Between undifferentiated and RA-treated hESCs, 166 differentially methylated CpG sites and 2,013 differentially expressed genes were discovered. Combined analysis of methylation and expression data revealed that 19 genes (STAP2, VAMP8, C10orf26, WFIKKN1, ELF3, C1QTNF6, C10orf10, MRGPRF, ARSE, LSAMP, CENTD3, LDB2, POU5F1, GSPT2, THY1, ZNF574, MSX1, SCMH1, and RARB) were highly correlated with each other. The results provided in this study will facilitate future investigations into the interplay between DNA methylation and gene expression through further functional and biological studies.

The epigenetic phenotypes in transgenic Nicotiana benthamiana for CaMV 35S-GFP are mediated by spontaneous transgene silencing

  • Sohn, Seong-Han;Choi, Min-Sue;Kim, Kook-Hyung;Lomonossoff, George
    • Plant Biotechnology Reports
    • /
    • 제5권3호
    • /
    • pp.273-281
    • /
    • 2011
  • Diverse epigenetic phenotypes are frequently found during research on transgenic plants. To understand the factors underlying such diversity, hundreds of independent 35S-GFP transgenic N. benthamiana plants were analyzed. The diverse GFP-expression phenotypes of the transgenic plants were classified into three major types based on the GFP expression patterns and their response to 35S-GFP agroinfiltration: steady-green, silenced and non-uniform phenotype. The non-uniform phenotype was further sub-divided into five minor phenotypes: variegated, red-dropped, on-silencing, partitioned and misty, according to the distribution of GFP expression on the leaves. Many of transgenic plants continuously generated diverse phenotypes over several generations despite the transgene identity. Such epigenetic GFP phenotyping was found to be the result of spontaneous transgene silencing mediated by either or both of post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS). This finding was verified by the detection of 21- and 24-nt small interfering RNA (siRNA) molecules, and DNA methylation in the transgenic plants that showed repeated epigenetic variation. Agroinfiltration demonstrated that irregular distribution of GFP on a leaf was the result of erratic transgene silencing, and the technique also proved to be a rapid and effective method for selecting fully silenced plants within 3 days. Furthermore, two novel phenotypes described are potential materials for in-depth investigations into the genes and mechanisms responsible for spontaneous transgene silencing.

히스톤 라이신 메틸화 (Histone Lysine Methylation)

  • 곽상준
    • 생명과학회지
    • /
    • 제17권3호통권83호
    • /
    • pp.444-453
    • /
    • 2007
  • 유핵세포의 게놈(genome)은 단백-DNA복합체인 염색질(chromatin)의 형태로 존재하는데, 생명현상을 유지하기 위해서는 생명체 또는 세포가 처한 상황에 맞게 염색질의 구조를 변화시키는 역동적인 조절기전이 필요하다. 염색질을 구성하는 기본단위는 히스톤 8량체 (histone octamer)를 포함하는 뉴클레오좀(nucleosome)이다. 히스톤 단백에는 여러 종류의 공유결합성 수식이 일어나는데, 그 중 하나가 라이신 잔기(lysine residue)에 일어나는 메틸화이다. 최근 수년간의 연구로 여러 개의 히스톤 라이신 메틸화효소(histone lysine methyltransferase, HKMT), 이에 결합하는 염색질단백 및 메틸화와 관련된 후생유전학적 현상이 밝혀졌으며, 특히 정밀한 연구방법을 동원한 다방면의 실험을 통하여 비록 자세한 기전과 전체적인 윤곽의 규명은 미흡하더라도 라이신 메틸화가 후생유전학적 변화를 초래하는 일부 과정이 규명 되었다. 또한 여러 종류의 라이신 탈메틸화효소가 최근에 발견됨에 따라, 아세틸화, 인산화등 다른 공유결합성 수식보다는 상대 적으로 안정되더라도, 히스톤 메 틸화로 유발되는 후생유전학적 변화가 불가역성이 아님을 알게 되었다.

제주 3대 대(大)기근과 4.3사건의 후성유전(後成遺傳)(Epigenetic)현상 개연성 (Possibility of Epigenetic Phenomenon of the three Major Famine and 4.3 Incident in Jeju)

  • 이문호;김정수
    • 문화기술의 융합
    • /
    • 제5권2호
    • /
    • pp.45-52
    • /
    • 2019
  • 인간 유전자 게놈 프로젝트가 1990-2003년까지 30억 달러를 들여 인간유전자 99%를 해독했다. 그런데, 유전자에 대한 많은 연구가 진행됨에 따라 유전자에 구조적인 변질이 오지 않고도 질병이 발생하는 경우가 많다는 사실이 밝혀지고 있다. 최신 학문인 후성유전자학이 이 문제에 대한 답을 내놓고 있다. 1670-1795년까지 제주를 덮친 흉년과 제주도민이 외부로 출도금지령 200년간의 고통, 그리고 1948년 4.3사건으로 도민이 삼분에 일이 죽임을 당하는 수난이 후성유전현상으로 자손대에 비만과 질병으로 발현될 수 있음을 세계역사속의 과학으로 보였다. 5G 기반의 헬스케어 IoT 기술을 이용하면 이러한 현상에 대한 후성유전학적 분석이 가능해져 비만 치료에 이용될 수 있다.