• Title/Summary/Keyword: Epigenetic

Search Result 430, Processing Time 0.026 seconds

Recovery of Genes Epigenetically Altered by the Histone Deacetylase Inhibitor Scriptaid and Demethylating Agent 5-Azacytidine in Human Leukemia Cells

  • Park, Eun-Kyung;Jeon, Eun-Hyung;Kim, In-Ho;Park, Seon-Yang
    • Genomics & Informatics
    • /
    • v.8 no.4
    • /
    • pp.185-193
    • /
    • 2010
  • Histone deacetylation and demethylation are epigenetic mechanisms implicated in cancer. Studies regarding the role of modulation of gene expression utilizing the histone deacetylase inhibitor scriptaid and the demethylating agent 5-azacytidine in HL-60 leukemia cells have been limited. We studied the possibility of recovering epigenetically silenced genes by scriptaid and 5-azacytidine in human leukemia cells by DNA microarray analysis. The first group was leukemia cells that were cultured with 5-azacytidine. The second group was cultured with scriptaid. The other group was cultured with both agents. Two hundred seventy newly developed genes were expressed after the combination of 5-azacytidine and scriptaid. Twenty-nine genes were unchanged after the combination treatment of 5-azacytidine and scriptaid. Among the 270 genes, 13 genes were differed significantly from the control. HPGD, CPA3, CEACAM6, LOC653907, ETS1, RAB37, PMP22, FST, FOXC1, and CCL2 were up-regulated, and IGLL3, IGLL1, and ASS1 were down-regulated. Eleven genes associated with oncogenesis were found among the differentially expressed genes: ETS1, ASCL2, BTG2, BTG1, SLAMF6, CDKN2D, RRAS, RET, GIPC1, MAGEB, and RGL4. We report the results of our leukemia cell microarray profiles after epigenetic combination therapy with the hope that they are the starting point of selectively targeted epigenetic therapy.

Pre-Natal Epigenetic Influences on Acute and Chronic Diseases Later in Life, such as Cancer: Global Health Crises Resulting from a Collision of Biological and Cultural Evolution

  • Trosko, James E.
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.394-407
    • /
    • 2011
  • Better understanding of the complex factors leading to human diseases will be necessary for both long term prevention and for managing short and long-term health problems. The underlying causes, leading to a global health crisis in both acute and chronic diseases, include finite global health care resources for sustained healthy human survival, the population explosion, increased environmental pollution, decreased clean air, water, food distribution, diminishing opportunities for human self-esteem, increased median life span, and the interconnection of infectious and chronic diseases. The transition of our pre-human nutritional requirements for survival to our current culturally-shaped diet has created a biologically-mismatched human dietary experience. While individual genetic, gender, and developmental stage factors contribute to human diseases, various environmental and culturally-determined factors are now contributing to both acute and chronic diseases. The transition from the hunter-gatherer to an agricultural-dependent human being has brought about a global crisis in human health. Initially, early humans ate seasonally-dependent and calorically-restricted foods, during the day, in a "feast or famine" manner. Today, modern humans eat diets of caloric abundance, at all times of the day, with foods of all seasons and from all parts of the world, that have been processed and which have been contaminated by all kinds of factors. No longer can one view, as distinct, infectious agent-related human acute diseases from chronic diseases. Moreover, while dietary and environmental chemicals could, in principle, cause disease pathogenesis by mutagenic and cytotoxic mechanisms, the primary cause is via "epigenetic", or altered gene expression, modifications in the three types of cells (e.g., adult stem; progenitor and terminally-differentiated cells of each organ) during all stages of human development. Even more significantly, alteration in the quantity of adult stem cells during early development by epigenetic chemicals could either increase or decrease the risk to various stem cell-based diseases, such as cancer, later in life. A new concept, the Barker hypothesis, has emerged that indicates pre-natal maternal dietary exposures can now affect diseases later in life. Examples from the studies of the atomic bomb survivors should illustrate this insight.

5-Aza-2'-deoxycytidine Induces Hepatoma Cell Apoptosis via Enhancing Methionine Adenosyltransferase 1A Expression and Inducing S-Adenosylmethionine Production

  • Liu, Wei-Jun;Ren, Jian-Guo;Li, Ting;Yu, Guo-Zheng;Zhang, Jin;Li, Chang-Sheng;Liu, Zhi-Su;Liu, Quan-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6433-6438
    • /
    • 2013
  • In hepatocellular cancer (HCC), lack of response to chemotherapy and radiation treatment can be caused by a loss of epigenetic modifications of cancer cells. Methionine adenosyltransferase 1A is inactivated in HCC and may be stimulated by an epigenetic change involving promoter hypermethylation. Therefore, drugs releasing epigenetic repression have been proposed to reverse this process. We studied the effect of the demethylating reagent 5-aza-2'-deoxycitidine (5-Aza-CdR) on MAT1A gene expression, DNA methylation and S-adenosylmethionine (SAMe) production in the HCC cell line Huh7. We found that MAT1A mRNA and protein expression were activated in Huh7 cells with the treatment of 5-Aza-CdR; the status of promoter hypermethylation was reversed. At the same time, MAT2A mRNA and protein expression was significantly reduced in Huh7 cells treated with 5-Aza-CdR, while SAMe production was significantly induced. However, 5-Aza-CdR showed no effects on MAT2A methylation. Furthermore, 5-Aza-CdR inhibited the growth of Huh7 cells and induced apoptosis and through down-regulation of Bcl-2, up-regulation of Bax and caspase-3. Our observations suggest that 5-Aza-CdR exerts its anti-tumor effects in Huh7 cells through an epigenetic change involving increased expression of the methionine adenosyltransferase 1A gene and induction of S-adenosylmethionine production.

Epigenetic modification of retinoic acid-treated human embryonic stem cells

  • Cheong, Hyun-Sub;Lee, Han-Chul;Park, Byung-Lae;Kim, Hye-Min;Jang, Mi-Jin;Han, Yong-Mahn;Kim, Seun-Young;Kim, Yong-Sung;Shin, Hyoung-Doo
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.830-835
    • /
    • 2010
  • Epigenetic modification of the genome through DNA methylation is the key to maintaining the differentiated state of human embryonic stem cells (hESCs), and it must be reset during differentiation by retinoic acid (RA) treatment. A genome-wide methylation/gene expression assay was performed in order to identify epigenetic modifications of RA-treated hESCs. Between undifferentiated and RA-treated hESCs, 166 differentially methylated CpG sites and 2,013 differentially expressed genes were discovered. Combined analysis of methylation and expression data revealed that 19 genes (STAP2, VAMP8, C10orf26, WFIKKN1, ELF3, C1QTNF6, C10orf10, MRGPRF, ARSE, LSAMP, CENTD3, LDB2, POU5F1, GSPT2, THY1, ZNF574, MSX1, SCMH1, and RARB) were highly correlated with each other. The results provided in this study will facilitate future investigations into the interplay between DNA methylation and gene expression through further functional and biological studies.

The epigenetic phenotypes in transgenic Nicotiana benthamiana for CaMV 35S-GFP are mediated by spontaneous transgene silencing

  • Sohn, Seong-Han;Choi, Min-Sue;Kim, Kook-Hyung;Lomonossoff, George
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.273-281
    • /
    • 2011
  • Diverse epigenetic phenotypes are frequently found during research on transgenic plants. To understand the factors underlying such diversity, hundreds of independent 35S-GFP transgenic N. benthamiana plants were analyzed. The diverse GFP-expression phenotypes of the transgenic plants were classified into three major types based on the GFP expression patterns and their response to 35S-GFP agroinfiltration: steady-green, silenced and non-uniform phenotype. The non-uniform phenotype was further sub-divided into five minor phenotypes: variegated, red-dropped, on-silencing, partitioned and misty, according to the distribution of GFP expression on the leaves. Many of transgenic plants continuously generated diverse phenotypes over several generations despite the transgene identity. Such epigenetic GFP phenotyping was found to be the result of spontaneous transgene silencing mediated by either or both of post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS). This finding was verified by the detection of 21- and 24-nt small interfering RNA (siRNA) molecules, and DNA methylation in the transgenic plants that showed repeated epigenetic variation. Agroinfiltration demonstrated that irregular distribution of GFP on a leaf was the result of erratic transgene silencing, and the technique also proved to be a rapid and effective method for selecting fully silenced plants within 3 days. Furthermore, two novel phenotypes described are potential materials for in-depth investigations into the genes and mechanisms responsible for spontaneous transgene silencing.

Histone Lysine Methylation (히스톤 라이신 메틸화)

  • Kwak, Sahng-June
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.444-453
    • /
    • 2007
  • Our genome exists in the form of chromatin, and its structural organization should be precisely regulated with an appropriate dynamic nature for life. The basic unit of chromatin is a nucleosome, which consists of a histone octamer. These nucleosomal histones are subject to various covalent modifications, one of which is methylation on certain lysine residues. Recent studies in histone biology identified many histone Iysine methyltransferases (HKMTs) responsible for respective lysine residues and uncovered various kinds of involved chromatin associating proteins and many related epigenetic phenotypes. With the aid of highly precise experimental tools, multi-disciplinary approaches have widened our understanding of how lysine methylation functions in diverse epigenetic processes though detailed mechanisms remain elusive. Still being considered as a relatively more stable mark than other modifications, the recent discovery of lysine demethylases will confer more flexibility on epigenetic memory transmitted through histone lysine methylation. In this review, advances that have been recently observed in epigenetic phenotypes related with histone lysine methylation and the enzymes for depositing and removing the methyl mark are provided.

Possibility of Epigenetic Phenomenon of the three Major Famine and 4.3 Incident in Jeju (제주 3대 대(大)기근과 4.3사건의 후성유전(後成遺傳)(Epigenetic)현상 개연성)

  • Lee, Moon Ho;Kim, Jeong Su
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.45-52
    • /
    • 2019
  • The human genome project decoded 99% of human genes for $ 3 billion by 1990-2003. However, as many studies on genes have progressed, it has become clear that there are many cases where diseases occur without structural alteration of genes. The latest study, Epigenetics, has come up with the answer to this problem. The famine that hit Jeju until 1670-1795, the ban on the exclusion of Jeju Island to the outside 200 years of suffering, and in 1948, one third of the citizens were killed by the 4.3 incident generate Epigenetic. It has been shown in the world history science that starving-stress can be manifested as obesity and disease in progeny due to hereditary phenomena. 5G-based healthcare IoT technology can be used for the treatment of obesity by enabling Epigenetic analysis of this phenomenon.

AURKB, in concert with REST, acts as an oxygen-sensitive epigenetic regulator of the hypoxic induction of MDM2

  • Kim, Iljin;Choi, Sanga;Yoo, Seongkyeong;Lee, Mingyu;Park, Jong-Wan
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.287-292
    • /
    • 2022
  • The acute response to hypoxia is mainly driven by hypoxia-inducible factors, but their effects gradually subside with time. Hypoxia-specific histone modifications may be important for the stable maintenance of long-term adaptation to hypoxia. However, little is known about the molecular mechanisms underlying the dynamic alterations of histones under hypoxic conditions. We found that the phosphorylation of histone H3 at Ser-10 (H3S10) was noticeably attenuated after hypoxic challenge, which was mediated by the inhibition of aurora kinase B (AURKB). To understand the role of AURKB in epigenetic regulation, DNA microarray and transcription factor binding site analyses combined with proteomics analysis were performed. Under normoxia, phosphorylated AURKB, in concert with the repressor element-1 silencing transcription factor (REST), phosphorylates H3S10, which allows the AURKB-REST complex to access the MDM2 proto-oncogene. REST then acts as a transcriptional repressor of MDM2 and downregulates its expression. Under hypoxia, AURKB is dephosphorylated and the AURKB-REST complex fails to access MDM2, leading to the upregulation of its expression. In this study, we present a case of hypoxia-specific epigenetic regulation of the oxygen-sensitive AURKB signaling pathway. To better understand the cellular adaptation to hypoxia, it is worthwhile to further investigate the epigenetic regulation of genes under hypoxic conditions.