• Title/Summary/Keyword: Epidemic

Search Result 891, Processing Time 0.027 seconds

The Response of the Seoul Municipal Hospitals against COVID-19 and Its Implications for Public Hospitals (서울시립병원의 코로나19 대응을 통해 본 공공병원의 시사점 고찰)

  • Shon, Changwoo
    • Korea Journal of Hospital Management
    • /
    • v.25 no.3
    • /
    • pp.38-52
    • /
    • 2020
  • Purpose: The purpose of the study is to suggest the main functions and implications of public hospitals to effectively respond to the future epidemic crisis based on analyzing the accessibility to designated Coronavirus Disease 2019 (COVID-19) medical institutions of Seoul and examining the main features of the quarantine of Seoul municipal hospitals. Method: To analyze the response and function of Seoul municipal hospitals, we reviewed the Infectious Disease Control and Prevention ACT, 258 articles of Seoul Metropolitan Government press releases from January to the end of April, 48 articles of Seoul Metropolitan Government's daily newsletters, 2019 Health Bureau Budget report. We also referred to internal data of Seoul Children's Hospital, Seoul Seobuk Hospital, and Seoul Eunpyeong Hospital during the same period. Besides, the accessibility to medical institutions was analyzed by using the COVID-19 data which was announced daily basis. Results: The accessibility of COVID-19 patients living in the Southeastern part of Seoul to a medical institutions was 16.2km on a distance basis, and it was the lowest accessibility among four regions of Seoul since it took about 40 minutes by car. On the other hand, patients living in the Northeast part had the highest accessibility, as the access to medical institutions was 10.7km and 27 minutes by car. Also, the main functions of the municipal hospital of Seoul against COVID-19 were to shift the public hospital function to COVID-19 patients only hospitals, to perform the epidemiological investigation by medical doctors, and to support the operation of self-isolation facilities, community treatment centers and triage rooms of community health centers. Conclusion: Through the experience of COVID-19, we suggested that the functions of public hospitals will be reorganized as the reinforcement of infectious disease treatment and mental health for quarantined patients, cooperation with private hospitals, supporting for strengthening community health capacity and preparation for another epidemic.

A Direction of Politic Support for Infectious Disease in Busan Using Time-series Clustering: Focusing on COVID-19 Cases (시계열 군집을 활용한 부산시 감염병 지원 정책 방향: COVID-19 사례를 중심으로)

  • Kwun, Hyeon-Ho;Kim, Do-Hee;Park, Chan-Ho;Lee, Eun-Ju;Cho, KiHaing;Bae, Hye-Rim
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.125-138
    • /
    • 2020
  • After the spread of COVID-19 in 2020, the country's Crisis Alert Level went up to the highest level, Level 4. Respond of COVID-19 pandemic, Governments, and cities secured each province's duty for the citizens. The government provided health assistance first and stepped forward to support the necessary resources for the citizens. Busan City proposed policy response to prepare and implement the Corona support for each county as well. The high occupant rate of self-business owners lost basic incomes, and the effect varies on industries. In our paper, to avoid any crisis in such an epidemic, we propose a clustering analysis for the guidance of policy support for Busan City. By analyzing patterns and clustering on districts and Sectors, we would like to provide reference materials for determining the direction of support and guiding preemptive response in the event of a similar epidemic.

A Simulation Output Analysis Environment by utilizing Elastic Stack (Elastic Stack을 이용한 시뮬레이션 분석 환경 구성)

  • Hwang Bo, Seong Woo;Lee, Kang Sun;Kwon, Yong Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • In this paper, we propose a simulation output analysis environment using Elastic Stack technology in order to reduce the complexity of the simulation analysis process. The proposed simulation output analysis environment automatically transfers simulation outputs to a centralized analysis server from a set of simulation execution resources, physically separated over a network, manages the collected simulation outputs in a fashion that further analysis tasks can be easily performed, and provides a connection to analysis and visualization services of Kibana in Elastic Stack. The proposed analysis environment provides scalability where a set of computation resources can be added on demand. We demonstrate how the proposed simulation output analysis environment can perform the simulation output analysis effectively with an example of spreading epidemic diseases, such as influenza and flu.

BGRcast: A Disease Forecast Model to Support Decision-making for Chemical Sprays to Control Bacterial Grain Rot of Rice

  • Lee, Yong Hwan;Ko, Sug-Ju;Cha, Kwang-Hong;Park, Eun Woo
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.350-362
    • /
    • 2015
  • A disease forecast model for bacterial grain rot (BGR) of rice, which is caused by Burkholderia glumae, was developed in this study. The model, which was named 'BGRcast', determined daily conduciveness of weather conditions to epidemic development of BGR and forecasted risk of BGR development. All data that were used to develop and validate the BGRcast model were collected from field observations on disease incidence at Naju, Korea during 1998-2004 and 2010. In this study, we have proposed the environmental conduciveness as a measure of conduciveness of weather conditions for population growth of B. glumae and panicle infection in the field. The BGRcast calculated daily environmental conduciveness, $C_i$, based on daily minimum temperature and daily average relative humidity. With regard to the developmental stages of rice plants, the epidemic development of BGR was divided into three phases, i.e., lag, inoculum build-up and infection phases. Daily average of $C_i$ was calculated for the inoculum build-up phase ($C_{inf}$) and the infection phase ($C_{inc}$). The $C_{inc}$ and $C_{inf}$ were considered environmental conduciveness for the periods of inoculum build-up in association with rice plants and panicle infection during the heading stage, respectively. The BGRcast model was able to forecast actual occurrence of BGR at the probability of 71.4% and its false alarm ratio was 47.6%. With the thresholds of $C_{inc}=0.3$ and $C_{inf}=0.5$, the model was able to provide advisories that could be used to make decisions on whether to spray bactericide at the preand post-heading stage.

Genetic sequence and phylogenetic analysis of spike genes of Porcine epidemic diarrhea virus (PEDV) in Chung-Nam area (충남지역 돼지유행성설사 바이러스 Spike 유전자 염기서열 및 계통분석)

  • Park, Hyo-Seon;Yook, Sim-Yong;Jeon, Dong-Min;Lee, Jin-Ju;Shin, Chang-Ho
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.4
    • /
    • pp.259-266
    • /
    • 2016
  • Porcine epidemic diarrhea virus (PEDV) causes an acute and lethal watery diarrhea in piglets that is great economic losses to the swine country worldwide. The spike (S) glycoprotein is an important determinant for PEDV biological properties. In the present study, we determined the full-length S gene sequences of five Chung-nam PEDV field isolates collected in 2016. The S gene was amplified by RT-PCR, purificated, sequenced, analyzed and then compared with published sequences of other PEDV strains. 5 field strains share 98.5%~99.9% homologies with each other at the nucleotide sequence level and 96.7%~99.9% homologies with each other at the amino acids sequence level. Most field strains have nucleotide insertions, deletions and mutation regions, and show lower homologies (93.1~93.8%) with classical and vaccine strains, however higher homologies (99.1%~99.5%) with US PEDV isolates in 2013. By phylogenetic tree analysis based on nucleotide sequence, five PEDV field isolates were clustered into Genogroup 2b but differ genetically from the vaccine strains (SM-98 and DR-13).

Assessing the Parasitic Burden in a Late Antique Florentine Emergency Burial Site

  • Roche, Kevin;Pacciani, Elsa;Bianucci, Raffaella;Bailly, Matthieu Le
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.6
    • /
    • pp.587-593
    • /
    • 2019
  • Excavation (2008-2014) carried out under the Uffizi Gallery (Florence, Italy) led to the discovery of 75 individuals, mostly buried in multiple graves. Based on Roman minted coins, the graves were preliminarily dated between the second half of the 4th and the beginning of the 5th centuries CE. Taphonomy showed that this was an emergency burial site associated with a catastrophic event, possibly an epidemic of unknown etiology with high mortality rates. In this perspective, paleoparasitological investigations were performed on 18 individuals exhumed from 9 multiple graves to assess the burden of gastrointestinal parasitism. Five out of eighteen individuals (27.7%) tested positive for ascarid-type remains; these are considered as "decorticated" Ascaris eggs, which have lost their outer mammillated coat. Roundworms (genus Ascaris) commonly infest human populations under dire sanitary conditions. Archaeological and historical evidence indicates that Florentia suffered a period of economic crisis between the end of 4th and the beginning of the 5th centuries CE, and that the aqueduct was severely damaged at the beginning of the 4th century CE, possibly during the siege of the Goths (406 CE). It is more than plausible that the epidemic, possibly coupled with the disruption of the aqueduct, deeply affected the living conditions of these individuals. A 27.7% frequency suggests that ascariasis was widespread in this population. This investigation exemplifies how paleoparasitological information can be retrieved from the analysis of sediments sampled in cemeteries, thus allowing a better assessment of the varying frequency of parasitic infections among ancient populations.

A Salmonella-related foodborne outbreak in a snack bar in Jeju Province: an epidemiological investigation (1개 분식점에서 발생한 살모넬라 식중독 집단 발생 역학조사)

  • Cho, Eun-Suk;Lee, Seung Hyuk;Bae, Jong-Myon
    • Journal of Medicine and Life Science
    • /
    • v.18 no.2
    • /
    • pp.25-30
    • /
    • 2021
  • Many people reported suspected food poisoning after consuming food at the same snack bar on June 18, 2020. Thus, an in-depth epidemiological investigation was conducted to identify the infectious agent and establish additional food poisoning prevention measures. The study included people who reported to the local public health center after June 18 with acute gastroenteritis symptoms within 4 days of consuming food from the snack bar. The onset of symptoms and food items consumed by individuals were then investigated via phone calls and on-site visits. Afterward, the infectious agent was identified from human samples (stool or rectal swab) of four restaurant employees and 89 people and from environmental samples (materials, cooking utensils, and water). The analysis revealed that the incubation period ranged from 2 hours to 92 hours, with a median and mode of 16 hours and 12 hours, respectively. Moreover, the epidemic curve had a unimodal shape because of common exposure, which reached its peak on June 18. After monitoring for 8 days, which is more than twice the maximum incubation period of 92 hours, the end of the epidemic was declared on June 28 as no additional cases were reported. Analysis of human and environmental samples revealed Salmonella bareilly of the pulsed-field gel electrophoresis pulsotype SAPX01.017 as the causative agent. Therefore, it was concluded that the food poisoning outbreak was caused by S. bareilly.

Assessing the risk of recurrence of porcine epidemic diarrhea virus in affected farms on Jeju Island, South Korea

  • Jang, Guehwan;Lee, Sunhee;Lee, Changhee
    • Journal of Veterinary Science
    • /
    • v.22 no.4
    • /
    • pp.48.1-48.15
    • /
    • 2021
  • Background: Porcine epidemic diarrhea virus (PEDV) is a swine enteropathogenic coronavirus that has devastated the swine industry in South Korea over the last 30 years. The lack of an effective method to control the endemics has led to a surge in PEDV recurrences in affected farms throughout the country. Objectives: In the first step toward establishing systematic monitoring of and active control measures over the swine populations, we constructed an assessment model that evaluates the status of (1) biosecurity, (2) herd immunity, and (3) virus circulation in each of the PEDV-infected farms. Methods: A total of 13 farrow-to-finish pig farms with a history of acute PEDV infection on Jeju Island were chosen for this study. The potential risk of the recurrence in these farms was estimated through on-site data collection and laboratory examination. Results: Overall, the data indicated that a considerable number of the PEDV-infected farms had lax biosecurity, achieved incomplete protective immunity in the sows despite multi-dose vaccination, and served as incubators of the circulating virus; thus, they face an increased risk of recurrent outbreaks. Intriguingly, our results suggest that after an outbreak, a farm requires proactive tasks, including reinforcing biosecurity, conducting serological and virus monitoring to check the sows' immunity and to identify the animals exposed to PEDV, and improving the vaccination scheme and disinfection practices if needed. Conclusions: The present study highlights the significance of coordinated PEDV management in infected farms to reduce the risk of recurrence and further contribute towards the national eradication of PEDV.

The cost-effectiveness of alternative control measures against the 2010-2011 epidemic of foot-and-mouth disease (FMD) in Andong, Republic of Korea

  • Kim, Eutteum;Pak, Son-Il
    • Journal of Preventive Veterinary Medicine
    • /
    • v.42 no.4
    • /
    • pp.163-170
    • /
    • 2018
  • The cost-effectiveness of foot-and-mouth disease (FMD) control strategies was evaluated using a simulation model fitted to the 2010/11 FMD epidemic in the city of Andong, Republic of Korea. Seven FMD-control strategies were evaluated with respect to the direct cost of a FMD-control strategy, such as slaughtering, movement restriction, and vaccination. All the strategies included pre-emptive slaughtering, movement restriction, and vaccination, but the levels of each control option were different. The simulated median cost of the baseline FMD-control strategy (three kilometers of pre-emptive slaughtering area, 100 days of movement restriction and vaccination of all FMD-susceptible animals in the study area) was estimated to be USD 99.7 million. When a five kilometer vaccination area was applied (with the other control measures being the same as the baseline strategy), the simulated median cost was reduced to USD 81.1 million from USD 99.7. The simulated median costs were USD 107.6 million for a five kilometer radius slaughtering area and USD 168.8 million for 60 days of movement restriction. The FMD-control strategy cost decreased with increasing number of farms depopulated per day. The probability of passive surveillance being effective or the probability of the successful implementation of movement restrictions were increased. Cost-effectiveness analysis is a suitable tool for evaluating the financial consequences of FMD-control strategies by comparing the cost of control strategies for a specific area.

Study on Policy Improvement Measures to Respond to Infectious Diseases of Livestock through Field Investigation (현장 조사를 통한 가축전염병 대응 정책개선 방안 연구)

  • Park, Hyun Shik;Ham, Seung Hee;Lee, Jun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.275-288
    • /
    • 2021
  • Purpose: The purpose of this study is to analyze the characteristics of animal carcasses treatment and quarantine management of infectious diseases of livestock, and to present the effectiveness of quarantine and follow-up management of livestock infectious diseases. Method: Actually, a livestock epidemic occurred and the burial site and burial management facility that treated livestock carcasses were visited on-site to analyze the management status and problems. Result: The burial method of livestock outbreaks of livestock infectious diseases and the long-term follow-up management accordingly requires a large amount of manpower and budget to be spent. For example, it can be seen that it is an inefficient quarantine system. Conclusion: It is necessary to review plans for the establishment of integrated livestock infectious animal carcasses treatment facilities at the level of metropolitan cities, districts, and municipalities with the government, where there is no fear of secondary infectious disease transmission and no follow-up management is required.