• Title/Summary/Keyword: Eocene

Search Result 45, Processing Time 0.04 seconds

Volcaniclastic Sedimentation of the Sejong Formation (Late Paleocene-Eocene), Barton Peninsula, King George Island, Antarctica

  • Yoo, Chan-Min;Choe, Moon-Young;Jo, Hyung-Rae;Kim, Yae-Dong;Kim, Ki-Hyune
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.97-107
    • /
    • 2001
  • The Sejong Formation of Late Paleocene to Eocene is a lower volcaniclastic sequence unconformably overlain by upper volcanic sequence, and distributed along the southern and southeastern cliffs of the Barton Peninsula. The Sejong Formation is divided into five sedimentary facies; disorganized matrix-supported conglomerate (Facies A), disorganized clast-supported conglomerate (Facies B), stratified clast-supported conglomerate (Facies C), thin-bedded sandstone (Facies D), and lapilli tuff (Facies E), based on sedimentary textures, primary sedimentary structures and bed geometries. Individual sedimentary facies is characterized by distinct sedimentary process such as gravel-bearing mudflows or muddy debris flows (Facies A), cohesionless debris flows (Facies B),unconfined or poorly confined hyperconcentrated flood flows and sheet floods (Facies C), subordinate streamflows (Facies D), and pyroclastic flows (Facies E). Deposition of the Sejong Formation was closely related to volcanic activity which occurred around the sedimentary basin. Four different phases of sediment filling were identified from constituting sedimentary facies. Thick conglomerate and sandstone were deposited during inter-eruptive phases (stages 1, 3 and 4), whereas lapilli tuff was formed by pyroclastic flows during active volcanism (stage 2). These records indicate that active volcanism occurred around the Barton Peninsula during Late Paleocene to Eocene.

  • PDF

Palaeomagnetic Results from the Okchon Belt: Anisotropy of Magnetic Susceptibility (AMS) and Tectonic Stress Field in the Taebaek Area (옥천대에 대한 고자기 연구 : 태백지역에서의 대자율 비등방성과 지구조적 응력장)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Jung, Yeon-Kyu;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.613-624
    • /
    • 1997
  • A study of anisotropy of magnetic susceptibility (AMS) was conducted on the Ordovician-Eocene strata in the Taebaek area. The study area is a northeastern part of the Okchon belt, sometimes called as Paegunsan Synclinal Area. A total of 600 independently oriented samples were collected from 60 sites covering the whole area. With a few exception of late Cretaceous-Eocene volcanic rocks, all the sampled strata are nonmetamorphosed sedimentary rocks, mainly sandstones. Among the 60 sites, 5 sites showed flow lineation lying on the bedding plane, 11 sites showed load foliation parallel to the bedding plane, and 21 sites showed tectonic foliation unrelated to the bedding plane. The tectonic foliations are defined by $k_1-k_2$ ($k_{max}-k_{int}$) anisotropy plane, and are considered as a result of tectonic forces acted perpendicularly to the foliation plane in the geologic past. Regardless of sample-site locations, tectonic force directions defined by $k_3$ ($k_{min}$) axis perpendicular to the tectonic foliation are consistent among the strata of the same geologic age. In the course of geologic time, however, the tectonic force directions showed a clockwise rotation: approximately E-W in the Ordovician sites, NW-SE in the Permian sites, N-S in the Triassic sites, and lastly NE-SW in the late Cretaceous-Eocene sites. The pre-Permian directions showed better clustering in the in-situ (geographic) coordinates, while the younger directions become better clustered after the bedding-tilt correction. It is interpreted that the major tectonic structures of the Taebaek area were controlled by the above-mentioned tectonic forces: The Paegunsan Syncline and the Hambaeksan Fault must have been generated by the NW-SE force of late Permian-early Triassic time. It was then reactivated in the reverse (dextral) sense by the N-S force of Triassic time. The Osipchon Fault in the eastern part of the study area was either generated or reactivated by the NE-SW force of late Cretaceous-Eocene time. The Permo-Triassic NW-SE force should be an expression of the Songnim Disturbance in the Korean peninsula, which is in turn related with the SCB/NCB collision in China.

  • PDF

Hydrocarbon Source Rock Potential of Eocene Forearc and Subduction Zone Strata, Southern Oregon Coast Range, U.S.A. (미국 오레곤 남부 에오세 전호상 및 섭입대 퇴적층의 탄화수소 근원암 가능성)

  • Ryu, In-Chang
    • The Korean Journal of Petroleum Geology
    • /
    • v.11 no.1 s.12
    • /
    • pp.27-41
    • /
    • 2005
  • The hydrocarbon source rock potential of the Eocene units in the southern Oregon Coast Range was evaluated by using the Rock-Eval pyrolysis. Most Eocene units in southern Oregon Coast Range are thermally immature and contain lean, gas-prone Type III kerogen. However, some beds(coals) are sufficiently organic-rich to be sources of biogenic and thermogenic methane discovered in numerous seeps. The overall hydrocarbon source rock potential of the southern Oregon Coast Range is moderately low. Several requirements for commercial accumulations of hydrocarbon, however, probably exist locally within and adjacent areas. Three speculative petroleum systems are identified. The first includes the southern part of the Oregon Coast Range near the border with the Mesozoic Klamath Mountains and is related to a proposed subduction zone maturation mechanism along thrust faults. The second is centered in the northern part of the range and may be associated with basin-centered gas in an over-pressured zone. The third occurs near the eastern border of the range where maturation is related heating by sills and migration of hydrothermal fluids associated with mid-Tertiary volcanism in the Western cascade arc.

  • PDF

Copper in Peru: Present Status and Future Challenge (페루의 동: 현황과 미래의 도전)

  • Acosta, Jorge;Bustamante, Alberto;Cardozo, Miguel;Heo, Chul-Ho;Kim, Eui-Jun
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.561-568
    • /
    • 2013
  • The copper mineralization in Peru is intimately associated with porphyry Cu deposits and subdivides into three porphyry Cu belt as Paleocene, Eocene-Oligocene, and Miocene. Up to now, the total copper production from them reach 28 Mt Cu. The total copper production from the Paleocene Cu belt, including Toquepala, Cuajone, and Cerro Verde, accounts for approximately 57% of total copper production from Peru. But focusing mineral exploration on middle southern (Eocene-Oligocene) and northwestern part (Miocene) of Peru results in new discoveries, including La Granja, El Galeno, Las Bambas, Toromocho, and Rio Blanco, which have an estimated annual production more than 200,000 t Cu. In addition to them, thirteen Cu deposits are discovered from the Paleocene, Eocene-Oligocene, and Miocene Cu belts. Thus, Peru is supposed to produce Cu production from 2014 and increases annual production from 143 Mt Cu in 2012 to 490 Mt Cu in 2019. Due to new discoveries, it is expected that mineral exploration activities in Peru are likely to move from Paleocene Cu belt to Eocene-Oligocene and Miocene Cu belts.

Origin of the East Sea (Japan Sea) and Plate Tectonics (東海의 起源과 板構造論)

  • Kim, So Gu
    • 한국해양학회지
    • /
    • v.19 no.1
    • /
    • pp.94-102
    • /
    • 1984
  • The origin of the East sea is discussed in the light of modern geophysical theories such as plate tectonics and sea-floor spreading. The origin of the East Sea was due to the tensional force of the back-arc spreading which was initiated as early as late Cretaceous time of Paleocene. The spreading was asymmetric with a fast movement of eastward or southeastward and a slow westward motions. The spreading, however, was confined to the East Sea due to the change of the Pacific Plate north-northwest to west-northwest during Eocene time. Further intensifying research based on more accurate seismic data as well as on geophysical and geological informations should be carried out continuously to understand if the spreading of the Japan Sea died out due to triple junction formed by mention of the Pacific, the Eurasian, and the Philippine plates since the Quaternary.

  • PDF

Origin of the Eocene Gyeongju A-type Granite, SE Korea: Implication for the High Fluorine Contents (에오세 경주 A-형 화강암의 기원: 높은 불소 함량에 대한 고찰)

  • Myeong, Bora;Kim, Jung-Hoon;Woo, Hyeong-Dong;Jang, Yun Deuk
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.439-453
    • /
    • 2018
  • The Eocene Gyeongju granitoids in SE Korea are alkali feldspar granite (AGR), biotite granite (BTGR), and hornblende biotite granodiorite (HBGD) along Yangsan fault and Ulsan fault. According to their geochemical characteristics, these granitoids are classified as A-type (AGR) and I-type (BTGR and HBGD) granitoids, and regarded that were derived from same parental magma in upper mantle. The hornblende and biotite of AGR as an interstitial phase indicate that influx of F-rich fluid during the crystallization of AGR magma. AGR is enriched LILE (except Sr and Ba) and LREE that indicate the influences for subduction released fluids. The highest HFSE contents and zircon saturation temperature of AGR among the Eocene Gyeongju granitoids may indicate that it was affected by partial melting rather than magma fractionation. These characteristics may represent that the high F contents of AGR was affected by F-rich fluid derived from the subducted slab and partial melting. It corresponds with the results of the REE modeling and the dehydrated fluid component (Ba/Th) modeling showing that AGR (A-type) was formed by the partial melting of BTGR (I-type) with the continual influx of F-rich fluid derived from the subducted slab.

A Note on Magnetic Properties of Volcanic Rocks Collected from King George Island, Antarctic Peninsula

  • Funaki, Minoru;Ogishima, Tomoko
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.313-318
    • /
    • 2002
  • The basic magnetic properties are reported for Eocene andesite and granitic andesite collected from the King Sejong Station and Marsh Runway at King George Island, South Shetland Islands Antarctic Peninsula. Samples A (andesite), B (granitic andesite) and D (granitic andesite) carry stable component of natural remanent magnetization (NRM), but sample C (andesite) unstable URM. These NRM stabilities are consistent with the domain structures estimated by the ratios of $J_R/J_s\;and\;H_{RC}/H_C$ values. On the basis of their Curie temperature, we infer magnetite as the main magnetic carrier for samples A B and C and titanomagnetite for sample D. Our study reveals that samples A and B are suitable for paleomagnetic investigations, whereas sample D is not.

Stratigraphy and Petrology of the Volcanic mass in the Chilpo-Weolpo Area, the north of Pohang basin, Korea (포항분지(浦項盆地) 북부(北部)(칠포(七浦)-월포(月浦)일원)에 분포(分布)하는 화산암류(火山岩類)에 대한 암석학적(岩石學的)·층서적(層序的) 연구(硏究))

  • Yun, Sung Hyo
    • Economic and Environmental Geology
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 1988
  • The purpose of this study is to determine the stratigraphy of the volcanic rocks in the Chilpo-Weolpo area, the north of Pohang basin, based on field survey and lithological properties of the rocks. The volcanic pile(Chilpo tuff) overlies the Cretaceous sedimentary formation and is unconformably overlain by the Miocene Yeonil Group. The Chilpo tuff comprises a thick sequence(>200m) of pyroclastic flow deposits. Five members are distinguished, each representing separate flow units, comprising none(or weakly) to densely welded rhyolite tuff. The Chilpo tuff consists of, in ascending order, greenish weakly welded tuff, volcanic conglomerate, alternation of tuff breccias and fine tuffs, greenish none to densely welded tuff and red-brownish densely to weakly welded vitric tuff. This study revealed that the volcanic rocks in this area were formed by 4 volcanic stages. On the basis of K-Ar age($44.7{\pm}1.1\;Ma$) and lithologic data, geological age of the Chilpo tuff may be Eocene.

  • PDF

Sediment-hosted gold mineralization of the Kyaukpahto mine, Kawlin Township, Myanmar

  • Swe, Ye-Myint;Min, A-Ung;Lee, In-Sung
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.315-315
    • /
    • 2003
  • Gold mineralization at Kyaukpahto occurs as stockworks/disseminations and locally as breccia zones in silicified sandstones of Lower to Middle Eocene Male Formation of Myanmar. The mineralization is spatially related with NNE -trending fracture zones_probably tensional open fractures caused by the right-lateral Sagaing fault system. Intensive silicification, sericitization, argillic alteration, sulfidation, and decalcification are recognized in the Kyaukpahto mine area. (omitted)

  • PDF

Tectonic History of the Tertiary Basins of the Southern Korean Peninsula (한반도 남부의 제3기 분지 발달사)

  • Yoon, Sun;Chang, Ki-Hong;You, Hoan-Su;Lee, Young-Gil
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.301-308
    • /
    • 1991
  • Four Tertiary basins are distributed on the eastern coast of the southern Korean Peninsula, that is, Bugpyeong, Yeonghae, Pohang and Yangnam basins from north to south. The Yangnam and Pohang basins are the largest ones and have been well studied on their stratigraphies, paleoenvironments and geologic ages, and their tectonic history is representative on the tectogenesis of the Tertiary basins of the southern Korean Peninsula. The geologic events occurred in the Yangnam and Pohang basins from the Early-Middle Eocene through the Middle Miocene suggest that the Yangnam and Pohang basins resulted from the volcanism and rifting caused by the uprising magma, that is, by the diapiric tectogenesis.

  • PDF