• Title/Summary/Keyword: Enzyme-assisted extraction

Search Result 13, Processing Time 0.02 seconds

Optimization of Microwave-Assisted Pretreatment Conditions for Enzyme-free Hydrolysis of Lipid Extracted Microalgae (탈지미세조류의 무효소 당화를 위한 마이크로파 전처리 조건 최적화)

  • Jung, Hyun jin;Min, Bora;Kim, Seung Ki;Jo, Jae min;Kim, Jin Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.229-239
    • /
    • 2018
  • The purpose of this study was to effectively produce the biosugar from cell wall of lipid extracted microalgae (LEA) by using microwave-assisted pretreatment without enzymatic hydrolysis process. Response surface methodology (RSM) was applied to optimization of microwave-assisted pretreatment conditions for the production of biosugar based on enzyme-free process from LEA. Microwave power (198~702 W), extraction time (39~241 sec), and sulfuric acid (0~1.0 mol) were used as independent variables for central composite design (CCD) in order to predict optimum pretreatment conditions. It was noted that the pretreatment variables that affect the production of glucose (C6) and xylose (C5) significantly have been identified as the microwave power and extraction time. Additionally, the increase in microwave power and time had led to an increase in biosugar production. The superimposed contour plot for maximizing dependent variables showed the maximum C6 (hexose) and C5 (pentose) yields of 92.7 and 74.5% were estimated by the predicted model under pretreatment condition of 700 w, 185.7 sec, and 0.48 mol, and the yields of C6 and C5 were confirmed as 94.2 and 71.8% by experimental validation, respectively. This study showed that microwave-assisted pretreatment under low temperature below $100^{\circ}C$ with short pretreatment time was verified to be an effective enzyme free pretreatment process for the production of biosugar from LEA compared to conventional pretreatment methods.

Studies of separation and quantitation for selenium species in food (식품중의 셀레늄 화학종의 분리 및 정량연구)

  • Jang, Hee-Young;Min, Hyungsik;Lee, Jonghae;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.182-189
    • /
    • 2013
  • The purpose of this research is to separate and quantitate selenium species in some food samples with HPLC-ICP-MS. Cation exchange chromatography showed efficient separation only for inorganic Se species while reversed phase ion pair chromatography showed good separation for both inorganic and organic Se species. $C_8$ column ($Symmetryshield^{TM}\;RP_8$, 3.5 ${\mu}m$, $4.6{\times}150$ mm) was used with optimum condition of 5% methanol mobile phase, 0.05% of nonafluorovaleric acid ion pairing reagent. Five standard Se species of Se(IV), Se(VI), SeCys(selenocystein), SeMet(selenomethionine) and Se-M-C(seleno methyl cystein) were separated successfully under the optimum condition (mobile phase; 5% methanol, ion-pairing reagent; 0.05% nonafluorovaleric acid, flow rate; 0.9 mL $min^{-1}$). To extract Se species, microwave assisted and enzyme-assisted extraction methods were studied. In enzyme-assisted extraction method, protease I for garlic, protease I plus trypsin for pork and mackerel, and protease XIV for tuna showed the best extraction efficiency. With the optimum condition for each sample, it was found that mostly inorganic Se, SeCys and SeMet are present in the sample studied ranging from few ${\mu}g$ $g^{-1}$ to few tens of ${\mu}g$ $g^{-1}$.

Novel analysis procedure for red ginseng polysaccharides by matrix-assisted laser desorption/ionization time-of-flight/time-offlight mass spectrometry

  • Jin, Ye Rin;Oh, Myung Jin;Yuk, Heung Joo;An, Hyun Joo;Kim, Dong Seon
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.539-545
    • /
    • 2021
  • Background: Red ginseng polysaccharides (RGPs) have been acknowledged for their outstanding immunomodulation and anti-tumor activities. However, their studies are still limited by the complexity of their structural features, the absence of purification and enrichment methods, and the rarity of the analytical instruments that apply to the analysis of such macromolecules. Thus, this study is an attempt to establish a new mass spectrometry (MS)-based analysis procedure for RGPs. Methods: Saponin pre-excluded powder of RG (RG-SPEP, 10 mg) was treated with 200 µL of distilled water and centrifuged for 5 h at 1000 rpm and 85 ℃. Ethanol-based precipitation and centrifugation were applied to obtain RGPs from the heated extracts. Further, endo-carbohydrase treatments were performed to produce specific saccharide fragments. Solid-phase extraction (SPE) processes were implemented to purify and enrich the enzyme-treated RGPs, while matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) MS was employed for the partial structural analysis of the obtained RGPs. Results: Utilizing cellulase, porous graphitized carbon (PGC), hydrophilic interaction chromatography (HILIC), and MALDI-TOF/TOF MS, the neutral and acidic RGPs were qualitatively analyzed. Hexn and Hexn-18 (cellulose analogs) were determined to be novel neutral RGPs. Additionally, the [Unknown + Hexn] species were also determined as new acidic RGPs. Furthermore, HexAn (H) was determined as another form of the acidic RGPs. Conclusion: Compared to the previous methods of analysis, these unprecedented applications of HILIC-SPE and MALDI-TOF/TOF MS to analyze RGPs proved to be fairly effective for fractionating and detecting neutral and acidic components. This new procedure exhibits great potential as a specific tool for searching and determining various polysaccharides in many herbal medicines.