The gene encoding N-terminally truncated Tod polymerase ($\Delta$Tod polymerase) from Thermus thermophilus HJ6 was expressed in Escherichia coli under the control of the lambda pR and pL tandem promoters on the expression vector pJLA503. The N-terminal domain (250 amino acids) of Tod polymerase was removed without significant effect on enzyme activity and stability, while no 5'$\rightarrow$3' exonuclease activity was detected. The $\Delta$Tod polymerase was verified to possess very efficient reverse transcriptase (RT) activity in the presence of $MgCl_2$. The cDNA can also be amplified in the polymerase chain reaction (PCR) with this mutant enzyme. The $\Delta$Tod polymerase was exhibited higher activity than the Taq polymerase in a one-step RT-PCR.
Proceedings of the Korean Society of Crop Science Conference
/
2017.06a
/
pp.224-224
/
2017
In plants, cysteine(Cys) is decisive for protein and glutathione that acts as an indispensable sulfur grantor for methionine and many other sulfur containing secondary products. Cys formation is involved in the consecutive two reactions using two enzymes-serine acetyl transferase (SAT) and O-acetylserine (thiol)lyase (OASTL) and appeared in plant cytosol, chloroplast and mitochondria. OASTL is able to produce mimosine with 3-hydroxy-4-pyridone (3H4P) in lieu of $H_2S$ for Cys. In this report, we describe the first time cloning, purification and characterization of cytosolic(cy)OASTL from M. pudica and its expression in Escherichia coli and try to find out the cross link between this OASTL and the mimosine formation and to elucidate the metabolic role of cy-OASTL in M. pudica. The purified recombinant protein was 34.7 KDa. The optimum reaction pH and temperature was 6.5 and $50^{\circ}C$, respectively. The Michaelis constant (Km) and the Vmax value of the enzyme was $252{\pm}25{\mu}M$ and $57{\pm}3{\mu}M\;cysteine\;min^{-1}\;{\mu}g\;protein^{-1}$ for sulfide and $159{\pm}21{\mu}M$ and $58{\pm}2.4{\mu}M\;cysteine\;min^{-1}\;{\mu}g\;protein^{-1}$ for OAS subsequently. After cleaving the His-tag, we tried to observe cy-OASTL to form mimosine with appropriate substrate but it was not successful. It may be concluded that cy-OASTL of the present study is only Cys specific, not mimosine.
Two forms of glucoamylase (GI and GII) from starch-grown Lipomyces kononenkoae CBS 5608 mutant were purified to apparent homogeneity by means of ultrafiltration, Sephacryl S-200 gel filtration and DEAE Sephadex A-50 chromatography. The apparent molecular weight was calculated as ca. 150 kDa for GI and ca. 128 kDa for GII, respectively. Both enzymes were glycoproteins with isoelectric points of 5.6 (GI) and 5.4 (GII). They had a pH optimun of 4.5 and were stable from pH 5 to 8. The temperature optimum for both enzymes was $60^{\circ}C$, but they were rapidly inactivated above $70^{\circ}C$. The $K_m$ values toward starch were estimated to be 6.57 mg per ml for GI and 4.52 mg per ml for GII, and the $V_{max}$ values were 16.28 ${\mu}M$ per mg for GI and 32.25 ${\mu}M$ per mg for GII, respectively. The $K_m$ and $V_{max}$ values of GII for ${\alpha}-$ or ${\beta}-cyclodextrin$ were estimated to be 0.15 mg per ml and 2.0 mg per ml, respectively ($K_m$) and 1.02 ${\mu}M$ per mg or 1.02 ${\mu}M$ per mg, respectively ($V_{max}$). Neither enzyme exhibited pullulanase activity but they released only glucose from starch or cyclodextrin. Amino acid analysis indicated that both glucoamylases were enriched in proline and acid amino acids. Glucoamylase GII strongly cross-reacted with a monoclonal antibody raised against GI enzymes, and the two enzymes shared very similar amino acid composition. Western blot analysis indicated that L. kononenkoae CBS 5608 mutant produced two forms of glucoamylase on starch, and that synthesis of them was subject to glucose repression.
A metagenomic fosmid library was constructed using genomic DNA isolated from the gut microflora of Hermetia illucens, a black soldier fly. A cellulase-positive clone, with the CS10 gene, was identified by extensive Congo-red overlay screenings for cellulase activity from the fosmid library of 92,000 clones. The CS10 gene was composed of a 996 bp DNA sequence encoding the mature protein of 331 amino acids. The deduced amino acids of CS10 showed 72% sequence identity with the glycosyl hydrolase family 5 gene of Dysgonomonas mossii, displaying no significant sequence homology to already known cellulases. The purified CS10 protein presented a single band of cellulase activity with a molecular mass of approximately 40 kDa on the SDS-PAGE gel and zymogram. The purified CS10 protein exhibited optimal activity at $50^{\circ}C$ and pH 7.0, and the thermostability and pH stability of CS10 were preserved at the ranges of $20{\sim}50^{\circ}C$ and pH 4.0~10.0. CS10 exhibited little loss of cellulase activity against various chemical reagents such as 10% polar organic solvents, 1% non-ionic detergents, and 0.5 M denaturing agents. Moreover, the substrate specificity and the product patterns by thin-layer chromatography suggested that CS10 is an endo-${\beta}$-1,4-glucanase. From these biochemical properties of CS10, it is expected that the enzyme has the potential for application in industrial processes.
Kim, Seong-Tae;Yang, Kap-Seok;Seok, Yeong-Jae;Huh, Won-Ki;Kang, Sa-Ouk
Korean Journal of Microbiology
/
v.32
no.4
/
pp.315-321
/
1994
Glyoxalase I was purified 2,294-fold from Pleurotus ostreatus by S-hexylglutathione affinity chromatography, Sephadex G-150 gel filtration chromatography and DEAE-sepharose A-50 CL-6B ion exchange chromatography with an overall yield of 21.7%. The molecular mass determined by gel filtration was found to be approx. 34 kDa. SDS-PAGE revealed that the enzyme consists of two identical subunits with a molecular mass of approx. 17 kDa. The K sub(m) values of this enzyme for methylglyoxal and phenylglyoxal were 0.39 mM and 0.22 mM, respectively. And this enzyme had a strong affinity for L-xylosone and hydroxypyruvaldehyde. The enzyme showed its optimal activity at pH 6.5-7.5 and at $40^{\circ}C$. $^1H$-NMR spectroscopic analysis of enzymic reaction showed that this enzyme catalyzes intramolecular proton transfer.
A proteolytic enzyme was purified from the tissue extract of spargana (plerocercoids of Spirometra erinacei) by DEAE-Trisacryl M ion exchange chromatography and thiopropyl-sepharose affinity chromatography resulted in a 21-fold purification. The proteinase activity was assayed with a synthetic fluorescent substrate, carbobensoxy-phenylalanyl-7-amiso-4-trifluoromethyl-coumarin. SDS-polyacplamide gel electrophoresis of the purified materials revealed a single 28,000 dalton band. Inhibitor profiles of the band indicated that it belonged to cysteine endopeptidases. It exhibited identical pH curves with optimum at pH 5,5, and 50% activity from pH 4.7 to 8. It could completely degrade collagen chains to three identical products. It also showed some activity on hemoglobin. Furthermore, the band on immunoblots was reactive to the sera of sparganosis patients. These results suggest that the proteolytic enzyme belongs to cysteine proteinase which plays a role in the tissue penetration. Also it may be used as the antigen for diagnosis of active sparganosis.
$\beta$-Xylosidase B was produced by Escherichia coli HB101/pKMG12 carrying the xylB gene of Bacillus stearothermophilus No.236 on its recombinant plasmid. The $\beta$-xylosidase B produced was purified by ammonium sulfate fractionation, DEAE-Sepharose CL-6B, Sephacryl S-200 and Superdex 200 HR gel filtration. The purified enzyme showed the highest activity at pH 6.5 and 5$0^{\circ}C$. But, the enzyme was observed to be very sensitive to the pH and temperature of the reaction mixture. The enzyme was activated about 35% of its original activity in the presence of 1 mM of $Mn^{2+}$ but it was completely inhibited by $Ag^{+}$, $Cu^{2+}$and $Hg^{2+}$ions. In contrast with the $\beta$-xylosidase A, the B enzyme was found to have $\alpha$-arabinofuranosidase activity though the activity was fairly low compared with the $\alpha$-arabinofuranosidase produced from the arfI gene of the same Bacillus stearothermophilus. Therefore, $\beta$-xylosidase B is considered to be more suitable than $\beta$-xylosidase A at least for the biodegradation of arabinoxylan. The $K_{m}$ and V$_{max}$ values of the $\beta$-xylosidase B for o-nitrophenyl-$\alpha$-D-xylopyranoside were 6.43 mM and 1.45 $\mu$mole/min, respectively. Molecular mass of the enzyme was determind to be about 54 kDa by SDS-PAGE and 160 kDa by Superdex 200HR gel filtration, indicating that the functional $\beta$-xylosidase B was composed of three identical subunits.s.
The $(Ca^{2+}+Mg^{2+})$-ATPase has been purified homogeneously from sarcoplasmic reticulum of rat skeletal muscle by sucrose density gradient centrifugation. The purified enzyme has a molecular weight of 115,000 as judged by polyacrylamide gel electrophoresis in the presence of sodium dedecyl sulfate, and therefore has the same size of the enzyme in rabbit and chick skeletal muscle. $Ca^{2+}, Mg^{2+}, Fe^{2+}, Co^{2+}, and Mn^{2+}$ at 50 $\\muM$ show stimulatory effect on the ATP-ase, while $Zn^{2+}, Cu^{2+}, and Hg^{2+}$ inhibit it at the same concentration. The ATPase activity is insensitive to antimalarial drugs such as quinine and quinacrine, but is sensitive to inhibition by p-hydroxymecurie benzoate and phenylmethylsulfonylfluoride. The enzyme has optimum pH of 6 to 7 and Km value for ATP is estimated to be 98 $\\muM$. Thus, a number of biochemical properties of this enzyme appear to be different from those of the enzyme that have been isolated from rabbit skeletal muscle. The $(Ca^{2+}+Mg^{2+})$-ATPase appears to be selectively degraded in microsomal fraction. The activity of metalloendoprotease is evident in the microsomal preparation when assayed by radioactively labeled protein substrate, such as $^{3}H-casein and $^{125}I$-insulin. However, it is presently unclear whether the metalloendoprotease is responsible for the degradation of the $(Ca^{2+}+Mg^{2+})$-ATPase.
In this study, Pleurotus ostreatus No.42 was cultured in glucose-peptone-yeast-wheat bran medium using a previously reported novel rotary draft tube bioreactor. Versatile peroxidase (VP), a lignin-degrading enzyme, was isolated from a pellet-type mycelium culture grown in the medium for seven days. The VP was purified by sequentially applying ultra-filtration, DEAE-Sepharose CL-6B column, and Mono Q column. SDS-PAGE analysis revealed the molecular weight of VP to be 36.4 KDa with an isoelectric point of 3.65. The amino acid sequence was confirmed as VTCATGQTT. The purified VP was observed to possess the property of not only oxidizing Mn ions but also decomposing veratryl alcohol, a non-phenolic compound. The catalytic ability of VP is a subject for future research.
5,10-Methenyltetrahydrofolate synthetase from chicken liver was purified through 30-70% ammonium sulfate fractionation, Q Sepharose Fast Flow anion exchange and Source 15Phe hydrophobic interaction chromatography. Specific activities of cell extract, ammonium sulfate, Q Sepharose Fast Flow and Source 15Phe were 0.0085, 0.031, 0.80 and 1.27 U/mg, respectively. Purification fold activities of cell extract, ammonium sulfate, Q Sepharose Fast Flow and Source 15Phe were 1, 3.7, 94.1 and 149.4, respectively. HPLC gel permeation chromatography and SDS-polyacrylamide electrophoresis experiments indicated that the enzyme is a monomeric protein with a molecular weight of 22.8 kDa. Km for 5-methyl THF and Mg-ATP were $7.1\;{\mu}M$ and $63\;{\mu}M$, respectively. Optimum temperature and pH were $30^{\circ}C$ and 6.0, respectively. The data for metal ion specificity and stoichiometry showed that the maximum activity was obtained with a 1:l. ratio of $Mg^{2+}$. The ATP and Km values increased in the order of MgATP, MgCTP, MgUTP and MgGTP, and the maximum activities also decreased in the same order, indicating MgATP as the most efficient substrate. The enzyme was chemically modified only by tetranitrometane and 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide, indicating that tyrosine and carboxylate are present in the active site.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.