• Title/Summary/Keyword: Enzyme purification and characterization

Search Result 515, Processing Time 0.021 seconds

Purification and characterization of Protease from Kyenegum (계내금(鷄內金) 단백질 분해 효소의 정제와 특성)

  • Kim, Do-Wan;Jo, Hye-Sim;Jeong, Yong-Jin;Kim, Kwang-Soo
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.21-28
    • /
    • 2007
  • Objectives : Kyenegum has been popularly used long as the digestive. The purpose of this study was to investigate the purification and characteristics of protease obtained from Kyenegum crude enzyme. Methods : Kyenegum protease was purified by precipitation with ammonium sulfate followed by SP-Spharose ion exchange chromatography. The molecular weight of Kyenegum protease was estimated by SDS-PAGE electrophoresis. Results : Kyenegum protease was 3,087 units/mg protein specific activity, 14.5 purification fold and 9.8 % recovery. The molecular weight of protease was estimated to be 18 kDa. The isoelectric point was pI 8.97 and values of Km and Vmax of its were 48 mg/mL and 2 units/min, respectively. Conclusion : The result suggests that the protease obtained from Kyenegum has excellent stability of temperature, acid and collagen substrate specificity.

  • PDF

Partial Purification and Characterization of Limonoate Dehydrogenase from Rhodococcus fascians for the Degradation of Limonin

  • Puri, Munish;Kaur, Lakhwinder;Marwaha, Satwinder-Singh
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.669-673
    • /
    • 2002
  • An extracellular limonoate dehydrogenase was purified 10-fold from a cell-free extract of Rhodococcus fascians by ammonium sulfate precipitation, dialysis, and ultrafiltration. This purified dehydrogenase catalyzed the conversion of limonoate to 17-dehydrolimonoate. The enzyme showed optimum activity at pH 8.0 and $40^{\circ}C$, with $K_m$ value of 0.9$\muM$, and requires Zn ions and sulfhydryl groups for catalytic action. The enzyme activity was inhibited by $Hg^{2+}\;and\;NaN_3$ ions. The degradation of limonin (66%) in Kinnow mandarin juice was successfully demonstrated with partially purified limonoate dehydrogenase. With scale-up preparation of limonoate dehydrogenase, a successful debittering operation of fruit juices appears feasible.

Purification and Characterization of Polyphenol Oxidase in the Flesh of the Fuji Apple

  • Lim, Jeong-Ho;Jeong, Moon-Cheol;Moon, Kwang-Deog
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.177-182
    • /
    • 2006
  • Polyphenol oxidase (PPO) was isolated from the flesh of Fuji apples by DEAE-Cellulose, ammonium sulfate precipitation, phenyl-Sepharose CL-4B, and Sephdex G-100 chromatography. The molecular mass of the purified PPO was estimated to be 40 kDa by SDS polyacrylamide gel electrophoresis. With regard to substrate specificity, maximum activity was achieved with chlorogenic acid as substrate, followed by catechin and catechol whereas, there was no detectable activity with hydroquinic acid, resorcinol, or tyrosine as substrate. The optimum pH and temperature with catechol as substrate were 6.5 and $35^{\circ}C$, respectively. The enzyme was most stable at pH 6.0 and unstable at acidic pH. The enzyme was stable when it was heated to $45^{\circ}C$ but heating at $50^{\circ}C$ for more than 30 min caused 50% loss of activity. Reduced $ZnSO_4$, L-cystein, epigallocatechin-3-o-gallate (EGCG), and gallocatechin gallate (GCG) also inhibited activity.

Partial Purification and Characterization of Exoinulinase from Kluyveromyces marxianus YS-1 for Preparation of High-Fructose Syrup

  • Singh, Ram Sarup;Dhaliwal, Rajesh;Puri, Munish
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.733-738
    • /
    • 2007
  • An extracellular exoinulinase($2,1-\beta-D$ fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable(100%) for 3 h at the optimum temperature of $50^{\circ}C$. $Mn^{2+}\;and\;Ca^{2+}$ produced a 2A-fold and 1.2-fold enhancement in enzyme activity, whereas $Hg^{2+}\;and\;Ag^{2+}$ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6mg/ml and 41.3mg/ml, respectively.

Purification and Characterization of the Anabolic Acetolactate Synthase III from Serratia marcescens ATCC 25419

  • Joo, Han-Seung;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.244-249
    • /
    • 2001
  • The anabolic acetolactate synthase III was purified to homogeneity from Serratia marcescens using DEAE-Sepharose, Phenyl-Sepharose, and hydroxylapatite column chromatography The native molecular weight of the enzyme was approximately 165 kDa. The enzyme is composed of two large and two small subunits with molecular weights of 64 and 15 kDa, respectively. The N-terminal sequence of the large and small subunit of the enzyme was Ser-Ala-Thr-Pro-Gln-Pro-Ser-Thr-Arg-Phe-Thr-Cys-Ala-Gln-Leu-Ile-Ala-His-Leu and Met-Leu-Gln-Pro-Gln-Asp-Lys-Pro-Gln-Val-Ile-Leu-Glu-Leu-Ala-Val-Arg-Asn-His-Pro-Gly-Val-Met-Ser-His-Val, respectively. The optimum pH and pI value were 7.5 and 5.5, respectively The $IC_{50}$ values were $20\;{\mu}M$ and $14\;{\mu}M$ for valine and herbicide SU7, respectively. The substrate specificity ratio, R value, was determined to be approximately 40, which suggests that this enzyme prefers the formation of $\alpha$-aceto-$\alpha$-hydroxybutyrate leading to the synthesis of isoleucine.

  • PDF

Overproduction, Purification, and Characterization of Bacillus stearothermophilus Endo-xylanase A (XynA)

  • Cho, Ssang Goo;Jung Han Suh;Yong Jin Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 1996
  • By using a T7 expression system, a large amount of Bacillus stearothermophilus endo-xylanase A (XynA) could be produced in Escherichia coli cells. The overproduced enzyme formed inclusion bodies, and so the protein could be more easily purified to homogeneity. The molecular weight of the purified enzyme was estimated to be 22 kDa by SDS-polyacrylamide gel electrophoresis and 43 kDa by Sephacryl S-200 gel filtration, suggesting that the native enzyme was a homodimer. The pI value was determined to be 8.4. The Michaelis constants for birchwood xylan and oat spelts xylan were calculated to be 3.83 mg/ml and 5.03 mg/ml, respectively, and the $V_{max}$ max/ values for both xylans were 2.86 $\mu mole$/min. The purified enzyme was most active at $55^{\circ}C$ and pH 8.0, and stable up to $60^{\circ}C$ and in the near neutral pH range. From the zymogram, Bacillus stearothermophilus was found to have at least three xylanases and the purified one was the smallest among them.

  • PDF

Purification, Characterization and Chemical Modification of the Xylanase from Alkali-tolerant Bacillus sp. YA-14

  • Park, Young-Seo;Yum, Do-Young;Hahm, Byoung-Kwon;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.41-48
    • /
    • 1994
  • The xylanase from alkali-tolerant Bacillus sp. YA-14 was purified to homogeneity by CM-cellulose, Sephadex G-50, and hydroxyapatite column chromatographies. The molecular weight of the purified enzyme was estimated to be 20, 000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme slightly hydrolyzed carboxymethyl cellulose and Avicel, but did not hydrolyze soluble starch, dextran, pullulan, and ${\rho}-nitrophenyl-{\beta}$-D-xylopyranoside. The maximum degree of hydrolysis by enzyme for birchwood xylan and oat spelts xylan were 47 and 40%, respectively. The Michaelis constants for birchwood xylan and oat spelts xylan were calculated to be 3.03 mg/ml and 5.0 mg/ml, respectively. The activity of the xylanase was inhibited reversibly by $HgCl_2$, and showed competitive inhibition by N-bromosuccinimide, which probably indicates the involvement of tryptophan residue in the active center of the enzyme. The Xylanase was identified to be xylose-producing endo-type xylanase and did not show the enzymatic activities which cleave the branch point of the xylan structure.

  • PDF

Purification and Characterization of Heat-Tolerant Protease Produced by Bacillus polyfermenticus SCD

  • Choi, Gooi Hun;Jo, Mi Na;Kim, Jin-Man;Kim, Cheon-Jei;Kim, Kee-Tae;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1554-1559
    • /
    • 2013
  • A protease produced by Bacillus polyfermenticus SCD was purified and characterized as a new detergent material. The protease was purified from supernatant produced by B. polyfermenticus SCD, by ammonium sulfate precipitation, ion-exchange chromatography on a DEAE-Sephadex A-50, and finally gel filtration chromatography on Sephadex G-50. The molecular mass of this enzyme was 44 kDa based on SDS-PAGE. The optimum temperature and pH were $50^{\circ}C$ and pH 8.0. The ranges of its stability to the pH and temperature were 7.0 to 9.0 and under $40^{\circ}C$, respectively. The enzyme was highly stable in the presence of the surfactants like Triton X-100 (0.1%), showing a 2-fold increase in its proteolytic activity. However, the enzyme was slightly inhibited by the chelating agent EDTA (1 mM). The enzyme has a maximum activity at $50^{\circ}C$ and the activity can be increased by surfactants such as Triton X-100 and Tween 80.

Purification and Characterization of Internal Invertase in Rhodosporidum toruloides Mating Type a Cells

  • Jeong, Youn-Kee;Cho, Kyung-Soon;Lee, Tae-Ho;Ryu, Beung-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.3
    • /
    • pp.250-254
    • /
    • 1997
  • The internal invertase of Rhodosporidium toruloids mating type a cells was purified to a single band on SDS-PAGE from cell-free extract by acid precipitation, ion exchange chromatogaphy andgel filtration. The determined molecular weight of he purified enzyme was about 95,000 by gel filtration and 100,000 daltons on SDS-polyacryamide gel electrophoresis. This enzyme didn't show any activity change by several metal ions except 15.4% decrease by {TEX}$Mn^{2+}${/TEX} and was strongly inhibited by 2-mercaptoethanol and SDS. The invertase maintained its activity at high level until 70℃, but inactivated at 80℃ almost completely. The optimal temperature and pH of the enzyme were about 60℃ and pH 5.0, respectively. The stable pH range of invertase was narrow from pH 3.0 to 6.0. The Km value and isoelectric point of enzyme were 3.4×{TEX}$10^{3}${/TEX} M, pH 4.4, respectively.

  • PDF

Purification and Characterization of Manganese Superoxide Dismutase from Staphylococcus sciuri

  • Song, Chi-Hyun;Park, Eun-Kyung;Suh, Hyung-Joo;Lee, Yong-Se;Choi, Jang-Won;Ra, Kyung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.271-275
    • /
    • 1999
  • The intracellular superoxide dismutase (SOD) from Staphylococcus sciuri was isolated to homogeneity by continuous steps, including ammonium sulfate fractionation, DEAE-ion-exchange chromatography, gel filtration, and phenyl hydrophobic gel chromatography. Pure SOD had a specific activity of 4,625 U/mg and was purified 158-fold with a yield of 31 % from a cell free extract. The molecular weight of the purified SOD was determined to be approximately 35.5 kDa by gel filtration and the enzyme was also shown to be composed of dimeric subunits on denaturing SDS-PAGE. The enzyme activity remained stable at pH 5 to 11 and also to heat treatment of up to $50^{\circ}C$ at pH 7.8, with 80% relative activity. The enzyme was insensitive to cyanide, hydrogen peroxide, and azide, indicating that it is a manganese-containing SOD. The EPR spectrum showed the enzyme containing manganese as a cofactor.

  • PDF