• Title/Summary/Keyword: Enzyme cloning and expression

Search Result 240, Processing Time 0.022 seconds

Cloning and Characterization of a Bile Salt Hydrolase from Enterococcus faecalis Strain Isolated from Healthy Elderly Volunteers (사람 분변에서 분리한 Enterococcusfaecalis가 생성하는 BileSaltHydrolase의 특징)

  • Eom, Seok-Jin;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • Bile salt hydrolase (BSH, EC 3.5.1.24) activity, which cleaves amide bond between carboxyl group (bile acid) and amino group (glycine or taurine), is commonly detected in gut-associated species of human and animal. During the screening of BSH active strains from the fecal samples of elderly human volunteers, strain CU30-2 was isolated on the basis of the highly active BSH producing activity. A bsh gene of the isolate was cloned into the pET22b expression vector and overexpressed in Escherichia coli BL21 (DE3) Gold by induction with 1mM IPTG. The overexpressed BSH enzyme with 6x His-tag was purified with apparent homogeneity using a $Ni^+$-NTA agarose column and characterized. The BSH enzyme of E. faecalis CU30-2 exhibited approximately 50 times higher activity against glycol-conjugated bile salts than tauro-conjugated bile salts having the highest activity against glycocholic acid. Considering the prevalence of E. faecalis strains in the human GI tract and glycol-conjugates dominated bile acid composition of human bile, further study is needed to investigate the impact of the BSH activity exerted by E. faecalis strains to the host as well as to the BSH producing strains.

  • PDF

Cloning and Expression of a Fibrinolytic Enzyme Gene, aprECJ1, from Bacillus velezensis CJ1 Isolated from Myeolchi Jeotgal

  • Yoo, Ji Yeon;Yao, Zhuang;Lee, Se Jin;Jeon, Hye Sung;Kim, Jeong Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.289-297
    • /
    • 2021
  • Bacillus velezensis CJ1, showing significant fibrinolytic activity, was isolated from Myeolchi Jeotgal, a popular Korean fermented seafood. When B. velezensis CJ1 was grown on four different culture media, the culture on the Luria-Bertani (LB) broth showed the highest fibrinolytic activity (102.94 mU/μl) at 48 h. LB was also the best medium for growth. SDS-PAGE of culture supernatant showed four major bands, 38, 35, 27, and 22 kDa in size. Fibrin zymography showed four active bands, 50, 47, 40, and 30 kDa in size. A gene homologous to aprE of the Bacillus species was cloned by PCR. DNA sequencing showed that aprECJ1 can encode a protease consisting of 382 amino acids. The translated amino acid sequence of AprECJ1 showed high identity values with those of B. velezensis strains and other Bacillus species. The aprECJ1 gene was introduced into B. subtilis WB600 using an E. coli-Bacillus shuttle vector, pHY300PLK, and overexpressed. A 27 kDa band corresponding to the mature form of AprECJ1 was produced and confirmed by SDS-PAGE and fibrin zymography. B. subtilis WB600 [pHYaprECJ1] showed 1.8-fold higher fibrinolytic activity than B. velezensis CJ1 at 48 h.

Cloning of Major Capsid Protein Gene of Pseudorabies Virus and Expression by Baculovirus Vector System (Pseudorabies Virus의 Major Capsid Protein 유전자의 클론닝과 Baculovirus Vector System에 의한 발현)

  • An, Dong-Jun;Jun, Moo-Hyung;Song, Jae-Young;Park, Jong-Hyeon;Hyun, Bang-Hun;Chang, Kyung-Soo;An, Soo-Hwan
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.2
    • /
    • pp.151-162
    • /
    • 1996
  • Pseudorabies is caused by Pseudorabies virus (PRV: Aujeszky's disease virus) of Herpesviridae that is characterized by 100 to 150nm in size with a linear double-stranded DNA molecule with of approximately $90{\times}10^6Da$. This disease affects most of domestic animals such as swine, cattle, dog, sheep, cat, chicken, etc. causing high mortality and economic losses. In swine, young piglets show high mortality and pregnant sows, reproductive failures. However the adult swine reveals no clinical signs in general. But they become a carrier state and play an important role for propagation of the disease. In this study, the nucleotide sequence of major casid protein gene of PRV, Yangsan strain isolated from the diseased swine in Korea was analyzed, and the recombinant MCP was produced by expression of the MCP gene in Sf-9 cell using baculovirus transfer vector system. As result, in BamHI digestion, MCP gene locus of PRV YS strain showed different from that of Indiana S strain. The patterns of enzyme mapping were also found to be unidentical each other. The sequence of the MCP gene partially analyzed showed 98.09% identity to Indiana S strain. The expression of MCP in Sf-9 cell cotransfected by pVLMCP-44 baculovirus expression vector was characterized by Southern blot hybridization, immunofluoresent and immunocytochemical tests, SDS-PAGE and Western blotting. The rMCP with M.W. 142kDa was most effectively expressed in Sf-9 cells at the 3-4th days post inoculation of the recombinant baculovirus by 2 moi.

  • PDF

cDNA cloning and expression pattern of Cinnamate-4-Hydroxylase in the Korean black raspberry

  • Baek, Myung-Hwa;Chung, Byung-Yeoup;Kim, Jin-Hong;Kim, Jae-Sung;Lee, Seung-Sik;An, Byung-Chull;Lee, In-Jung;Kim, Tae-Hoon
    • BMB Reports
    • /
    • v.41 no.7
    • /
    • pp.529-536
    • /
    • 2008
  • Cinnamate-4-hydroxylase (C4H) is a key enzyme in the phenylpropanoid pathway, which is responsible for synthesizing a variety of secondary metabolites that participate in development and adaptation. In this study, we isolated a full-length cDNA of the C4H gene from the Korean black raspberry (Rubus sp.) and found that this gene existed as a single gene. By comparing the deduced amino acid sequence of Rubus sp. C4H with other sequences reported previously we determined that this sequence was highly conserved among widely divergent plant species. In addition, quantitative real time PCR studies indicated that the C4H gene had a differential expression pattern during fruit development, where gene expression was first detected in green fruit and was then remarkably reduced in yellow fruit, followed by an increase in red and black fruit. To investigate the two peaks in expression observed during fruit development and ripening, we measured the flavonoid content. The content of the major flavanol of Korean black raspberry fruits was determined to be highest at the beginning of fruit development, followed by a gradually decrease according to the developmental stages. In contrast, the content of anthocyanins during the progress of ripening was dramatically increased. Our results suggest that the C4H gene in Korean black raspberry plays a role during color development at the late stages of fruit ripening, whereas the expression of C4H gene during the early stages may be related to the accumulation of flavanols.

Molecular Cloning and Characterization of the Gene Encoding Phytoene Desaturase from Kocuria gwangalliensis (Kocuria gwangalliensis 유래 phytoene desaturase 유전자의 cloning과 특성 연구)

  • Seo, Yong Bae;Choi, Seong Seok;Nam, Soo-Wan;Kim, Gun-Do
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.226-235
    • /
    • 2017
  • Carotenoids such as phytoene, lycopene, and ${\beta}-carotene$ are used as food colorants, animal feed supplements, and for human nutrition and cosmetic purposes. Previously, we reported the isolation of a novel marine bacterium, Kocuria gwangalliensis, which produces a pink-orange pigment. Phytoene desaturase (CrtI), encoded by the gene crtI, catalyzes lycopene formation from phytoene and is an essential enzyme in the early steps of carotenoid biosynthesis. CrtI is one of the key enzymes regulating carotenoid biosynthesis and has been implicated as a rate-limiting enzyme of the pathway in various carotenoid synthesizing organisms. Here, we report the cloning of the crtI gene responsible for lycopene biosynthesis from K. gwangalliensis. The gene consisted of 1,584 bases encoding 527 amino acid residues. The nucleotide sequence of the crtI gene was compared with that of other species, including Kocuria rhizophila and Myxococcus xanthus, and was found to be well conserved during evolution. An expression plasmid containing the crtI gene was constructed (pCcrt1), and Escherichia coli cells were transformed with this plasmid to produce a recombinant protein of approximately 57 kDa, corresponding to the molecular weight of phytoene desaturase. Lycopene biosynthesis was confirmed when the plasmid pCcrtI was co-transformed into E. coli containing the plasmid pRScrtEB carrying the crtE and crtB genes required for lycopene biosynthesis. The results from this study will provide valuable information on the primary structure of K. gwangalliensis CrtI at the molecular level.

Subcloning and Enhanced Expression of the $\beta$-Xylosidase Gene Cloned from Alkalophilic Bacillus sp. K-17 (호알칼리성 Bacillus sp. K-17 의 $\beta$-Xylosidase 유전자의 Subcloning 및 발현증진)

  • Sung, Nack-Kie;Ko, Hack-Ryong;Kho, Yung-Hee;Chun, Hyo-Kon;Chung, Young-Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.283-288
    • /
    • 1989
  • To reduce the size of 5.0kb HindIII fragment containing $\beta$-xylosidase gene, the 5.0kb insert of pAX278 which was previously cloned was reduced by various deletions and thus 1.4kb EcoRI-Xbal fragment was subcloned into pUC19, and the recombinant plasmid was named pAK208. The $\beta$-xylosidase acnivity of E. coli harboring pAK208 was higher about 1.3times than that of pAX278. For the improvement of $\beta$-xylosidase activity, we cloned and expressed the $\beta$-xylosidase gene in E. coli using vector pKK223-3 containing a potent tac-promoter, and enzyme activity of the transformant harboring pKHR212 was increased about 3.3 and 1.8 times than that of E. coli(pAX278) and Bacillus sp. K-17, respectively. To obtain better expression of $\beta$-xylosidase gene, the whole 5.0kb HineIII fragment was recloned into pC194, and the Bacillus sp. K-17 transformant harbor-ing the recombinant plasmid pCX174 showed higher activity than that of the E. coli (pAX278) and Bacillus sp. K-17, respectively. The characteristics of enzyme purified from transformants were consistent with those front alkalophilic Bacillus sp, K-17.

  • PDF

Cloning of Cytochrome P450 Gene involved in the Pathway of Capsidiol Biosynthesis in Red Pepper Cells (고추세포에서 Capsidiol 생합성을 유도하는 Cytochrome P450 유전자의 탐색)

  • Kwon, Soon-Tae;Kim, Jae-Sung;Jung, Do-Cheul;Jeong, Jeong-Hag;Hwang, Jae-Moon;Oh, Sei-Myoung
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.879-888
    • /
    • 2003
  • In order to measure the enzyme activity of 5-epi-aristolochene hydroxylase, one of cytochrome P450 (P450) enzymes in eicitor-treated pepper cell, we used in vivo assay method and demonstrated a dramatic suppression of the activity by P450-inhibitors, ancymidol and ketocornazole. Using RT-PCR method with degenerate primer of the well conserved domains found within most P450-enzymes, and using cDNA library screening method, one distinct cDNA, being designated P450Hy01, was successfully isolated from elicitor-treated pepper cells. P450Hy01 mRNA was all induced in elicitor-treated cells whereas never induced in control cells. Moreover, levels of P450Hy01 expression were highly correlated with the levels of extracellular capsidiol production by different elicitors in cell cultures. P450Hy01 transcript was also induced by several other elicitors such as, cellulase, arachidonic acid, jasmonic acid, yeast extract as well as UV stress. P450Hy01 sequence contained high probability amino acid matches to known Plant P450 genes and ORF with a conserved FxxGxRxCxG heme-binding domain. P450Hy01 cDNA showed 98% of homology in sequence of nucleotide as well as amino acid to 5-epi-aristolochene-1, 3-hydroxylase (5EAl, 3H) which has been isolated in tobacco cells, suggesting that P450Hy01 is prominent candidate gene for P450-enzyme encoding 5EAl, 3H in pepper cell.

Characterization of Expressed Sequence Tags (ESTs) Generated from the Bombyx mandarina Whole Larvae and Molecular Cloning of Serine Protease Homologue Gene

  • Hwang, Jae Sam;Yun, Eun Young;Goo, Tae Won;Kim, Iksoo;Choi, Kwang Ho;Seong, Su Il;Kim, Keun Young;Lee, Sang Mong;Kang, Seok Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.167-171
    • /
    • 2004
  • We constructed an oligo-d(T) primed directional cDNA library from the Bombyx mandarina whole larvae. In an effort to isolate genes expressed in the B. mandarina, 227 expressed sequence tags (ESTs) were generated by single-pass sequencing from the cDNA library. Sequence analysis showed that 107 clones (47.1%) were classified into known genes and 120 clones (52.9%) were novel transcripts, which are unknown for their function. Of the 107 known genes, the most abundant gene was found to be actin and followed by serine protease in the expression profile. Among these clones, a serine protease homolog (BmSP) which is a class of proteolytic enzymes isolated. Full-length sequence of the BmSP cDNA clone was 922 bp in length and has an open reading frame of 276 amino acids. The conserved histidine, aspatic acid and serine residues forming the catalytic center as well as cysteine residues contributing to three disulphide bonds also were found in Bmsp gene. mRNA expression analysis revealed a high and specific expression of the gene only in midgut tissue, suggesting that BmSP gene is closely associated with the expression of digestive enzyme.

Molecular Cloning and Functional Analysis of the Gene Encoding 3-hydroxy-3-methylglutaryl Coenzyme A Reductase from Hazel (Corylus avellana L. Gasaway)

  • Wang, Yechun;Guo, Binhui;Zhang, Fei;Yao, Hongyan;Miao, Zhiqi;Tang, Kexuan
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.861-869
    • /
    • 2007
  • The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR; EC1.1.1.34) catalyzes the first committed step of isoprenoids biosynthesis in MVA pathway. Here we report for the first time the cloning and characterization of a full-length cDNA encoding HMGR (designated as CgHMGR, GenBank accession number EF206343) from hazel (Corylus avellana L. Gasaway), a taxol-producing plant species. The full-length cDNA of CgHMGR was 2064 bp containing a 1704-bp ORF encoding 567 amino acids. Bioinformatic analyses revealed that the deduced CgHMGR had extensive homology with other plant HMGRs and contained two transmembrane domains and a catalytic domain. The predicted 3-D model of CgHMGR had a typical spatial structure of HMGRs. Southern blot analysis indicated that CgHMGR belonged to a small gene family. Expression analysis revealed that CgHMGR expressed high in roots, and low in leaves and stems, and the expression of CgHMGR could be up-regulated by methyl jasmonate (MeJA). The functional color assay in Escherichia coli showed that CgHMGR could accelerate the biosynthesis of $\beta$-carotene, indicating that CgHMGR encoded a functional protein. The cloning, characterization and functional analysis of CgHMGR gene will enable us to further understand the role of CgHMGR involved in taxol biosynthetic pathway in C. avellana at molecular level.

Cloning of Human Liver Cytosolic Sialidase from Genomic DNA Using Splicing by Overlap Extension and Its Characterization

  • HA KI-TAE;CHO SEUNG-HAK;KANG SUNG-KOO;KIM YEON-KYE;KIM JUNE-KI;KIM CHEORL-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.722-727
    • /
    • 2005
  • Cytosolic sialidase (Neu2), a member of the sialidase family that is responsible for hydrolysis of sialic acid from the terminal position of sialoglycoconjugates, is poorly expressed in skeletal muscle and not detected in any other adult tissues. Thus, we isolated Neu2 cDNA using splicing by overlap extension (SOEing). In order to further characterize this enzyme, a His-tagged derivative was expressed in the bacterial expression system and purified by $Ni^{2+}$-affinity chromatography. A recombinant product of approximately 42 kDa had sialidase activity toward 4-methyl-umbelliferyl-$\alpha$-D-N-acetylneuraminic acid (4MU-NeuAc). The optimal pH and temperature of the recombinant Neu2 for 4MU-NeuAc was 6.0 and $37.5^{\circ}C$, respectively. The metal ions, such as $Cu^{2+}\;and\;Cd^{2+}$, showed strong inhibitory effect on the activity of the enzyme. The enzyme efficiently hydrolyzed the gangliosides GM3 and GD3 and had relatively low activities on ganglioside GD1a and GD1b, $\alpha$2-3 sialyllactose, and sialylated glycoproteins such as fetuin, transferrin, and orsomucoid, but had hardly any activities on $\alpha$2-6 sialyllactose and ganglioside GM1 and GM2. We concluded that the recombinant Neu2 has a sialidase activity toward glycoproteins as well as gangliosides.