• Title/Summary/Keyword: Enzyme Reaction

Search Result 1,943, Processing Time 0.024 seconds

Inhibitory effect of water-soluble mulberry leaf extract on hepatic lipid accumulation in high-fat diet-fed rats via modulation of hepatic microRNA-221/222 expression and inflammation (고지방식이 급여 쥐에서 수용성 뽕나무 잎 추출물의 간 microRNA-221/222 발현 및 염증 조절을 통한 간 지질 축적억제 효과)

  • Lee, Mak-Soon;Kim, Cheamin;Ko, Hyunmi;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.227-239
    • /
    • 2022
  • Purpose: This study investigated the effects of water-soluble mulberry leaf extract (ME) on hepatic lipid accumulation in high-fat diet-fed rats via the regulation of hepatic microRNA (miR)-221/222 and inflammation. Methods: Male Sprague-Dawley rats (4 weeks old) were randomly divided into 3 groups (n = 7 each) and fed with 10 kcal% low-fat diet (LF), 45 kcal% high-fat diet (HF), or HF + 0.8% ME for 14 weeks. Lipid profiles and cytokine levels of the liver and serum were measured using commercial enzymatic colorimetric and enzyme-linked immunosorbent assay, respectively. The messenger RNA (mRNA) and miR levels in liver tissue were assayed by real-time quantitative reverse-transcription polymerase chain reaction. Results: Supplementation of ME reduces body weight and improves the liver and serum lipid profiles as compared to the HF group. The mRNA levels of hepatic peroxisome proliferator-activated receptor-gamma, sterol regulatory element binding protein-1c, fatty acid synthase, and fatty acid translocase, which are genes involved in lipid metabolism, were significantly downregulated in the ME group compared to the HF group. In contrast, the mRNA level of hepatic carnitine palmitoyl transferase-1 (involved in fatty acid oxidation) was upregulated by ME supplementation. Furthermore, administration of ME significantly downregulated the mRNA levels of inflammatory mediators such as hepatic tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein-1, and inducible nitric oxide synthase. The serum levels of TNF-α, IL-6, and nitric oxide were also significantly reduced in ME group compared to the HF group. Expression of hepatic miR-221 and miR-222, which increase in the inflammatory state of the liver, were also significantly inhibited in the ME group compared to the HF group. Conclusion: These results indicate that ME has the potential to improve hepatic lipid accumulation in high-fat diet-fed rats via modulation of inflammatory mediators and hepatic miR-221/222 expressions.

Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과)

  • Lee, Young-Kyung;Kim, Chul Hwan;Jeong, Dae Won;Lee, Ki Won;Oh, Young Taek;Kim, Jeong Il;Jeong, Jin-Woo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.565-573
    • /
    • 2022
  • Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory and antioxidative activities of Lotus Root extract (LRE) in Porphyromonas gingivalis derived lipopolysaccharide (LPS-PG)-stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by LRE treatment in a dose-dependent manner. LRE treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor-κB (NF-κB) in LPS-PG-stimulated HGF-1 cells. In addition, one of phase II enzyme, NAD(P)H quinone dehydrogenase (NQO)-1, and its transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), were significantly induced by LRE treatment. Consequently, these results suggest that LRE ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, and activating NQO-1/Nrf2 antioxidant response element signaling pathways in HGF-1 cells.

Taste Compounds and Antioxidant Properties in Extracts of Angelica keiskei and Oenanthe javanica Juice By-Products According to Extraction Methods (추출 방법에 따른 명일엽과 돌미나리 착즙박의 정미성분 및 항산화 특성)

  • Hyun Jung Lee;Ha Na Ryoo;Hyeon Gyu Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.517-527
    • /
    • 2023
  • This study aimed to examine the possibility of upcycling extracts of Angelica keiskei and Oenanthe javanica juice by-products through comparing enzyme extraction (EE) and complex extraction (CE) methods to increase the extraction yield and flavor of materials. A higher extraction yield was obtained for free amino acid content with EE and CE for A. keiskei and O. javanica juice by-products, respectively, and a higher extraction efficiency was achieved with juice by-products than with extracts prepared from raw materials before juice production. The content of major amino acids varied depending on the extraction method used. When used according to the characteristics of the extract, their use as a functional material was confirmed along with improvement in the flavor of the food. Consistently high extraction yields for organic acid and sugar levels were obtained with CE in A. keiskei and O. javanica juice by-products. The DPPH radical scavenging ability and TPC were consistently high with CE in A. keiskei and O. javanica juice by-products; the increase in extracted content was likely because of the reaction between the ethanol used for CE and the phenolic compounds. However, because the antioxidant capacity of the juice by-product extracts was somewhat lower than that of the extracts from raw materials before juice production, the amount used should be reviewed. The TFC was found to be higher in extracts obtained with EE than with CE for A. keiskei juice by-products; however, no significant difference was observed between EE and CE in the O. javanica juice by-products. Through this study, the taste compounds and antioxidant properties of extracts obtained from juice by-products produced after the production of A. keiskei and O. javanica green juice were analyzed, and the availability of high value-added materials was confirmed. Based on these research results, expanding specific R&D for practical use should be explored.