• Title/Summary/Keyword: Enzyme Hydrolysate

Search Result 249, Processing Time 0.027 seconds

Preparation of Natural Seasoning using Enzymatic Hydrolysates from Byproducts of Alaska Pollock Theragra chalcogramma and Sea Tangle Laminaria japonica (명태(Theragra chalcogramma) 및 다시마(Laminaria japonica) 부산물 유래 효소 가수분해물을 이용한 천연 풍미 소재의 제조)

  • Kim, Jeong Gyun;Noh, Yuni;Park, Kwon Hyun;Lee, Ji Sun;Kim, Hyeon Jeong;Kim, Min Ji;Yoon, Moo Ho;Kim, Jin-Soo;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.545-552
    • /
    • 2012
  • This study developed a natural seasoning (NS) and characterized its food components. Hydrolysate from Alaska Pollock Theragra chalcogramma heads and sea tangle Laminaria japonica byproduct were obtained by incubating them with Neutrase for 4 h. NS was prepared by mixing sorbitol 2%, salt 2%, ginger powder 0.04%, garlic powder 0.2%, onion powder 0.2% and inosine monophosphate (IMP) 0.1% based on concentrated hydrolysates from Alaska pollock head and sea tangle byproduct before vaccum filtering. The proximate composition of NS was 82.7% moisture, 9.0% crude protein, and 5.1% ash. It had a higher crude protein content than commercial anchovy sauce (CS), it was lower in moisture and ash. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and angiotensin-I converting enzyme (ACE) inhibiting activity of NS were 90.1% and 88.9%, respectively, which were superior to those of CS. The free amino acid content and total taste value of NS were 1,626.0 mg/100 mL and 165.86, respectively, which were higher than those of CS. According to the results of taste value, the major free amino acids were glutamic acid and aspartic acid. In the sensory evaluation, the color and taste of NS were superior to those of CS. No difference in fish odor between NS and CS was found.

Lowering the Bitterness of Enzymatic Hydrolysate Using Aminopeptidase-active Fractions from the Common Squid (Todarodes pacificus) Hepatopancreas (살 오징어(Todarodes pacificus) 간췌장으로부터 aminopeptidase 활성 획분의 쓴맛 개선 효과)

  • Kim, Jin-Soo;Kim, Hye-Suk;Lee, Hyun Ji;Park, Sung Hwan;Kim, Ki Hyun;Kang, Sang In;Heu, Min Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.716-722
    • /
    • 2014
  • Aminopeptidase-active fractions from crude extract of the hepatopancreas of a common squid (Todarodes pacificus) were obtained using acetone (AC; 30-40%) and ammonium sulfate precipitation (AS; 60-70% saturation), anion exchange (AE-II; 0.2 M NaCl) and gel filtration chromatography (GF-I; 30-50 kDa), respectively. The debittering capacity of GF-I fraction based on the aminopeptidase activity (89.2 U/mg), recovery (56.6%) and sensory evaluation (1.0) was better than that of other fractions. Release of amino acids increased as incubation time was increased, and the bitterness of the enzyme reaction mixtures decreased. Incubation with the GF-I fraction for 24 h resulted in the hydrolysis of several peptides, as revealed by reverse-phase HPLC profiles. Peaks 3, 5 and 6 showed the decreased area (%), whereas peaks 1, 2 and 4 showed the increased area. The GF-I fractions were found to be suitable for reducing bitterness in protein hydrolysates by catalyzing the hydrolysis of bitter peptides.

Improvement of the Antioxidative and ACE-inhibiting Activities of Commercial Soy Sauce using Gelatin Hydrolysates from the By-products of Alaska Pollock (명태 수리미 부산물 유래 젤라틴 가수분해물을 이용한 시판 간장의 항산화성 및 ACE 저해활성의 개선)

  • Heu, Min-Soo;Park, Chan-Ho;Kim, Jeong-Gyun;Kim, Hyung-Jun;Yoon, Min-Seok;Park, Kwon-Hyun;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.3
    • /
    • pp.179-187
    • /
    • 2010
  • This study examined ways to improve the functional properties of commercial soy sauce using gelatin hydrolysates from the refiner discharge of Alaska pollock, Theragra chalcogramma. The total nitrogen content and pH of gelatin sauce prepared by dissolving the second-step gelatin hydrolysates (15 g), salt (20 g), sugar (5 g), glucose (2.5 g), inosine monophosphate (IMP) (0.5 g), black pepper (0.1 g), caramel powder (0.1 g), ginger powder (0.05 g), garlic powder (0.05 g), vinegar (3 mL), and fructose (3 mL) in water(100 mL) were 1.71% and 5.35, respectively. The results of a sensory evaluation indicated that when preparing blended soy sauce, the optimal blending ratio of gelatin sauce to commercial soy sauce was 20:80 (v/v). Because the total nitrogen content and pH of the blended soy sauce were 1.52% and 5.31, respectively, the blended soy sauce could be sold as a soy sauce. The oxidative property of the blended soy sauce was similar to that of 20 mM ascorbic acid, and its angiotensin-converting enzyme (ACE) -inhibiting activity was 1.5 mg/mL. The results suggest that the antioxidative and ACE-inhibiting activities of commercial soy sauce can be improved by blending gelatin sauce (20) with commercial soy sauce (80). The total amino acid content of the blended soy sauce was 9,107.3 mg/mL, which was higher than that (8,992.4 mg/100 mL) of commercial soy sauce. However, the taste value of the blended soy sauce was 415.8, which was lower than that (431.2) of commercial soy sauce.

Spray-dried powder preparation of pumpkin sweet potato hydrolysates and its physicochemical properties (호박고구마 효소 분해물의 분무건조 분말 제조 및 물리화학적 품질특성)

  • Lee, Dae-Hoon;Jang, Jong-Hyun;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.246-253
    • /
    • 2017
  • This study was conducted prepare spray-dried powder using pumpkin sweet potato hydrolysates and examine the physicochemical properties of the powder. The insoluble dietary fiber and soluble dietary fiber of the pumpkin sweet potato treated by enzyme were 4.17% and 2.07%, respectively. The spray-dried pumpkin sweet potato hydrolysates was manufactured via spray-drying with different forming agents: i.e., pectin 0.1%, 0.5%, 1%, and 2.0%. The moisture contents and total starches of the spray-dried powders were approximately 1.68-2.46 and 45.32-46.51%, respectively. The color of the L and a value decreased, and that of the b and ${\Delta}E$ value increased. The particle size and outer topology of the spray-dried powders were $37.17-42.32{\mu}m$, and its shape was generally globular. The water absorption index of the spray-dried powder (1.74-1.91) was lower than that of the freeze-dried powder (2.15). The water solubility index of the spray-dried powder, 80.75-87.61%, was higher than that of the freeze-dried powder (70.47%). The adhesion values of spray-dried powder to epithelial HT-29 cells were 2.66-6.18% of the initial cell counts, whereas freeze-dried powder showed lower adhesive ability (1.79%). The in vitro human digestibility in the spray-dried powder was 70.09% which is very effective in digestion.

Isolation and Partial Physicochemical Characterization of Bile Acid-Binding Fraction from Rice Bran Protein Hydrolysates (미강 단백질 가수분해물에서 담즙산 결합 획분의 분리 및 특성구명)

  • Cho, Wan-Il;Moon, Tae-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.417-426
    • /
    • 1997
  • Rice bran protein hydrolysates were prepared and some of their physicochemical properties were investigated to utilize rice bran as starting material for functional food ingredient. Rice bran proteins (RBP) were prepared from defatted rice bran by alkaline extraction and isoelectric precipitation. The enzyme for hydrolysis of RBP was selected through measuring relative activity by pH-drop method and comparing the degree of hydrolysis (DH) of hydrolysates. The enzymatic hydrolysates prepared by $Esperase^{\circledR}$ treatment were partitioned into two fractions by ultrafiltration(UF) with a 10 kDa molecular weight cut-off membrane. Each fraction was applied to a cholic acid-conjugated ${\omega}-aminohexyl$ Sepharose 4B column and the bile acid-binding components were obtained by eluting with deoxycholate. Gel permeation chromatography on a Sephadex G-50 column revealed that molecular weight of the bile acid-binding fraction of UF permeate was distributed in ranges of $2\;kDa{\sim}10\;kDa$ and $0.2\;kDa{\sim}0.6\;kDa$. Three peaks (R-1, R-2 and R-3) were obtained by prep-HPLC of bile acid-binding fraction of UF retentate and analyzed for total and free amino acid composition. The results showed that proline content of the bile-acid binding polypeptides and peptides was four times as much as that of rice bran protein and that the peak corresponding to higher average hydrophobicity had a higher free amino acid content. Average hydrophobicity slightly increased with enzymatic hydrolysis.

  • PDF

Property Changes of Mung Bean Depending on Hydrolysis Conditions (녹두의 가수분해조건에 따른 특성 변화)

  • Gu, Young-Ah;Jang, Se-Young;Park, Nan-Young;Mun, Chae-Ryun;Kim, Ok-Mi;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.13 no.5
    • /
    • pp.563-568
    • /
    • 2006
  • The properties of mung bean were investigated depending on hydrolysis condition. The results showed that enzyme treatments (${\alpha}$-amylase and protease each at 0.1% (w/w)) by varying hydrolysis temperature showed better properties than non-pretense treatment (control group). The treatment with 0.08% ${\alpha}$-amylase was best for optimum hydrolysis of mung bean starch The treatment using a mixture of 0.08% (w/w) ${\alpha}$-amylase and 0.12% (w/w) protease was best for optimum hydrolysis of meg bean protein. The effects of Hydrolysis time of mung bean showed that the optimum time was 60 and 90 min and there fore the optimum time was set at 60 min. These result showed that the best hydrolysis conditions of mung bean were the treatment at $60^{\circ}C$ for 60 min using a mixture of 0.08%(w/w) ${\alpha}$-amylase and 0.12% (w/w) pretense, with the sugar level shown at $5.8^{\circ}Brix$, reducing sugar at 2,022.13 mg% and crude protein at 7,666.17 mg%.

Bioethanol Production from Gracilaria verrucosa Using Saccharomyces cerevisiae with Adaptive Evolution (Galactose에 순치한 Saccharomyces cerevisiae를 이용하여 꼬시래기(Gracilaria verrucosa)로부터 바이오에탄올 생산)

  • Yang, Ji Won;Park, Yu Rim;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.88-94
    • /
    • 2021
  • The seaweed, Gracilaria verrucosa (red seaweed) was fermented to produce bioethanol. Optimal thermal acid hydrolysis conditions were determined as 200 mM H2SO4 and 10% (w/v) seaweed slurry at 130℃ for 60 min yielding 47.5% of pretreatment efficiency (Ep). After the thermal acid hydrolysis, enzymatic saccharification was carried out with 16 U/ml Viscozyme L, Cellic CTec2 or mixture of Viscozyme L and Cellic CTec2 to G. verrucosa hydrolysates. Enzymatic saccharifications with Viscozyme, Cellic CTec2 or mixture of those yielded 7.3 g/l glucose with efficiency of saccharification, Es = 34.9%, 11.6 g/l glucose with Es = 64.4% and the mixture of those 9.6 g/l glucose with Es = 56.6%, respectively. Therefore, based on the Es value, Cellic CTec2 was selected for the optimal enzyme for enzymatic saccharification of G. verrucosa hydrolysate. The ethanol productions with non-adapted S. cerevisiae CEN-PK2 (wild type) and S. cerevisiae CEN-PK2 with adaptive evolution to galactose produced 8.5 g/l ethanol with YEtOH = 0.19 and 21.5 g/l ethanol with YEtOH = 0.50 at 144 h, respectively. From these results, the ethanol production by S. cerevisiae with adaptive evolution showed high concentration of ethanol production using G. verrucosa as a substrate.

Purification and Isolation for Antihypertensive Peptides from Beef Heart and Spleen (쇠고기 부산물로부터 혈압 상승 억제 펩타이드 분리 및 정제)

  • Jang, S. H.;Jang, A.;Kim, K. J.;Cheon, Y. H.;Min, J. S.;Lee, S. O.;Lee, M.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.319-326
    • /
    • 2003
  • Angiotensin-I converting enzyme(ACE)inhibitor was isolated from beef by-products. The beef by- product hydrolysates prepared with various proteases were tested for the inhibitory effects against ACE. The proteases used were proteinase A from bakers yeast, protease type ⅩIII fungal and thermolysin. The maximum inhibitory effect was observed after hydrolysis for 12hrs(beef heart) and 24hrs(beef spleen), respectively. After gel filtration, IC50 value was 0.37mg/ml in beef heart and 1.84mg/ml in beef spleen. After RP-HPLC, the IC50 value of peak 1, peak 2, peak 3 and peak-4 were 0.28mg/ml, 0.26mg/ml, 0.25mg/ml and 0.35mg/ml, respectively. In the results of amino acid composition of peak 1, peak 2, peak 3 and peak 4, it was observed that peak 1 was consisted mainly of glycine and methionine, peak 2 was proline, cystine and methionine, peak 3 was proline and peak 4 was alanine, methionine and leucine. In conclusion, beef heart hydrolysate treated with thermolysin+ proteinase A was shown to have the highest inhibitory effect for 12hrs incubation at 37$^{\circ}C$.

Production of highly enriched GABA through Lactobacillus plantarum fermentation of katsuobushi protein hydrolyzate made from Dendropanax morbiferus extract fermented by Bacillus subtilis (황칠나무 추출물의 고초균 발효물로 제조된 가쓰오부시 단백가수분해물의 Lactobacillus plantarum 발효를 통한 고농도 GABA 생산)

  • Yu-Jeong An;Nak-Ju Sung;Sam-Pin Lee
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.146-154
    • /
    • 2023
  • To develop a multi-functional ingredient, the bioconversion of katsuobushi protein was optimized using Bacillus subtilis HA and Lactobacillus plantarum KS2020. The Dendropanax morbiferus extract (DME) culture with protease activity (102 unit/mL) was prepared by B. subtilis with 2% glucose and 1% skim milk through one day of alkaline fermentation. Katsuobushi protein was effectively hydrolyzed by the DME culture at 60℃ for 3 hours, resulting in a tyrosine content of 156.85 mg%. Subsequently, a second lactic acid fermentation was carried out with 10% monosodium glutamate (MSG) using L. plantarum KS2020 to produce higher levels of GABA. Following co-cultivation for three days, DME exhibited a pH of 8.3 (0% acidity). After seven days, the viable cell count of L. plantarum increased to 9.33 CFU/mL, but viable Bacillus cells were not detected. Taken together, a multi-functional ingredient with enriched GABA, peptides, probiotics, and umami flavor was developed through lactic acid fermentation using hydrolyzed katsuobushi protein. These results indicate that katsuobushi protein could be used as a byproduct to produce a palatable protein hydrolysate using alkaline-fermented DME culture as a proteolytic enzyme source.