• Title/Summary/Keyword: Enzyme

Search Result 14,108, Processing Time 0.035 seconds

Effect of Enzyme Supplementation on the Performance of Growing-Finishing Pigs Fed Barley-Based Diets Supplemented with Soybean Mealor Canola Meal

  • Thacker, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.1008-1013
    • /
    • 2001
  • This experiment was conducted to determine the effects of enzyme supplementation on the performance of 80 growing-finishing pigs (26.2 kg) fed diets containing either soybean or canola meal. Barley-based diets formulated using either soybean meal or canola meal were fed with or without enzyme (Allzyme Vegpro, Alltech Biotechnology Centre). Eight castrates and twelve gilts were fed each diet. Digestibility of dry matter, crude protein and gross energy was 8.0 (p=0.0001), 7.9 (p=0.0005) and 7.9 (p=0.0003) percent lower for pigs fed diets containing canola meal compared with soybean meal. Enzyme supplementation had no effect on nutrient digestibility (p>0.05). There was a significant interaction between protein source and enzyme for all three nutrients. Over the entire experimental period (26.2 to 77.9 kg), pigs fed canola meal consumed 9.4% less feed (p=0.001), gained weight 20.4% slower (p=0.001) and had a 12.9% poorer feed conversion (p=0.001) than pigs fed soybean meal. Weight gain, feed intake and feed conversion were unaffected by enzyme addition (p>0.05). Castrates gained weight 11.4% faster (p=0.001), consumed 9.3% more feed (p=0.001) and had a 2.6% better feed conversion (p=0.026) than gilts. There was a significant interaction between protein source and sex of pig for feed conversion. Pigs fed diets based on canola meal had a significantly lower carcass value index (p=0.01), lower lean yield (p=0.007) and lower lean depth over the loin (p=0.001) than pigs fed diets based on soybean meal. Enzyme addition significantly increased lean depth over the loin (p=0.01). There was a significant interaction between protein source and enzyme for carcass value index (p=0.04), estimated lean yield (p=0.05) and fat depth over the loin (p=0.05). These results confirm previous studies which have demonstrated poorer pig performance when canola meal completely replaces soybean meal in diets fed to growing-finishing pigs. In addition, the results provide little justification for the inclusion of the Vegpro enzyme in diets fed to pigs of this weight range.

Optimal Enzyme Selection for Organic Whey Protein Hydrolysis (유기농 유청 단백 가수분해의 최적 효소 선발)

  • Suh, Hyung Joo;Shin, Jung Cheul;Kim, Jae Hwan;Jang, Joo Hyun;Han, Sung Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1359-1363
    • /
    • 2017
  • The purpose of this study was that the optimal hydrolysis conditions of endo- and exo-type enzymes were selected to utilize organic cheese byproducts. Optimal substrate concentration and optimum enzyme ratio were measured by using 4 kinds of endo-type enzymes (alcalase, neutrase, protamex, and foodpro alkaline protease) and two exo-type enzymes (flavourzyme and prozyme 2000P) for whey protein hydrolysis were analyzed using liquid chromatography. As a result, the optimal endo-type enzyme through the first enzyme reaction was selected as alcalse, and as a result of the secondary enzyme reaction, flavourzme was selected as the Exo type enzyme. The concentration of whey protein substrate for optimal primary and secondary enzyme reactions was 10%. In addition, the optimum ratio of enzyme was 0.5% of alcalase and 0.2% of flavourzyme, which showed low molecular weight chromatography pattern compared to 2% of alcalase and 1% of flavourzyme hydrolyzate. Therefore, hydrolyzing the endo-type enzyme alcalase at a concentration of 0.5% for 10 hours and then hydrolyzing the exo-type enzyme flavouryme at a concentration of 0.2% for 4 hours was considered to be the optimum condition.

Stabilization of Barley $\beta$-Amylase by Modification with $IO_4$-Oxidized Starch ($IO_4$-산화전분 변형에 의한 보리 $\beta$-Amylase의 안정성 증가)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.4
    • /
    • pp.342-347
    • /
    • 2000
  • The stabilization of barley $\beta$-amylase(Biozyme ML, Amano) was attained by modification with periodate-oxidized soluble starch. The specific activities of modified enzyme at pH 9.7 and pH 8.0 were 42% and 92%, respectively, compared with that of native enzyme. The pH stability of modified enzyme was increased at pH 2~5 and 7~12 in the presence of $\alpha$-cyclodextrin( $\alpha$ -CD) compared wish that of native enzyme. Thermal stability of the modified enzyme was increased. After treatment at 6$0^{\circ}C$ for 10min. the activity remained 8% for the enzyme modified at pH 8.0 in the presence of $\alpha$-CD, 4.5% for the native enzyme. The native enzyme and modified enzyme showed two peak in HPLC. The molecular weight of the modified enzyme was slightly increased in HPLC analysis.

  • PDF

Studies on the Cellulolytic Enzyme System of Rhizopus sp. G-211 Isolated from Rotting Ginseng (인삼부패란중 Rhizopus sp. G-211이 생성하는 Cellulase 에 관한 연구)

  • 노혜원;김상달;도재호;강성호
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1982
  • A Rhizopus sp. was selected for its strong cellulolytic activity among various strains of molds found in rotting ginseng roots. Studies were made on some properties of the cellyloiytic enzyme produced by the strain. The results obtained were summarized as follows: The optimum pH of the enzyme was 4.5 and the range of its stability to the pH was 3.0 to 7.0. The optimum temperature was 5$0^{\circ}C$, while the enzyme was instantly inactivated above 6$0^{\circ}C$. Mn$^{++}$ and Co$^{++}$ ions increased enzyme activity and the metal ions were found to increased the ther-mostability of the enzyme. This enzyme was inhibited by sodium dodecyl sulfate and 2,4-dinitrophenol. This enzyme had a strong cellulolytic enzyme activity on various native cellulose given a sufficient reaction time. The addition of 0.5% saponin solution into reaction mixture increased the enzyme activity.

  • PDF

Studies on the $\beta$-Galactosidase from Thermophilic Bacterium - On the Production, Purification of Enzyme and the Properties of the Purified Enzyme - (고온성세균의 $\beta$-Galactosidase에 관한 연구( II )-효소의 생산, 정제 및 정제효소의 성질-)

  • 오만진;이종수;김해중;김찬조
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 1983
  • This experiment was carried out to optimize the condition for the enzyme production by selected strain in the basal medium, to purify the enzyme and to characterize the purified enzyme. The results obtained were as follows. 1. The optimal conditions for the $\beta$-galactosidase production were initial pH 7.0 and temperature $65^{\circ}C$. 2. Enzyme was induced by the addition of lactose and galactose, and it was intracellular enzyme. 3. The purified enzyme was obtained with the increased level of activity approximately 28.5 folds as compared with crude enzyme and the yield of 15.2% by means of DEAE-Cellulose column chromatography, Sephadex G-150 gel filtration 4. $\beta$-galactosidase from final step of purification showed a sing1e protein band on polyacrylamide gel disc electrophoresis. 5. The optimal temperature and pH of the purified enzyme were $65^{\circ}C$, pH 6.5 for the hydrolysis of lactose.

  • PDF

Characteristics of Raw Starch-Digesting Enzyme from Streptomyces sp. 4M-2 (Streptomyces sp. 4M-2가 생산하는 생전분 분해효소의 특성)

  • 최성현;김찬조;오만진;이종수
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.136-141
    • /
    • 1989
  • A raw starch-digesting enzyme from Streptomyces sp. 4M-2 was purified by ammonium sulfate fractionation, DEAE-Sephadex A-50 column chromatography and Sephadex G-100 gel filtration. The specific activity of the purified enzyme was 51.22 RSU/mg protein and the yield was 4.5% of the total activity of the culture broth. The purified enzyme was found to be homogeneous by polyacrylamide gel electrophoresis and its molecular weight was estimated to be about 102, 000 daltons by SDS-polyacrylamide gel electrophoresis, The optimal temperature and pH for the enzyme activity were 42$^{\circ}C$ and PH 5.5, respectively. The enzyme had Km, value of 44.44mg/$m\ell$ for raw corn starch. The enzyme was activated by addition of calcium and barium ions. Corn amylose was degraded by the enzyme very easily and raw potato starch was also degraded easily. Main products of the enzymatic hydrolysis of raw corn starch were analyzed to be maltose and maltotriose. The enzyme was considered as $\alpha$-amylase.

  • PDF

Crystal Structure of (S)-3-Hydroxybutyryl-CoA Dehydrogenase from Clostridium butyricum and Its Mutations that Enhance Reaction Kinetics

  • Kim, Eun-Jung;Kim, Jieun;Ahn, Jae-Woo;Kim, Yeo-Jin;Chang, Jeong Ho;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1636-1643
    • /
    • 2014
  • 3-Hydroxybutyryl-CoA dehydrogenase is an enzyme that catalyzes the second step in the biosynthesis of n-butanol from acetyl-CoA, in which acetoacetyl-CoA is reduced to 3-hydroxybutyryl-CoA. To understand the molecular mechanisms of n-butanol biosynthesis, we determined the crystal structure of 3-hydroxybutyryl-CoA dehydrogenase from Clostridium butyricum (CbHBD). The monomer structure of CbHBD exhibits a two-domain topology, with N- and C-terminal domains, and the dimerization of the enzyme was mostly constituted at the C-terminal domain. The mode of cofactor binding to CbHBD was elucidated by determining the crystal structure of the enzyme in complex with $NAD^+$. We also determined the enzyme's structure in complex with its acetoacetyl-CoA substrate, revealing that the adenosine diphosphate moiety was not highly stabilized compared with the remainder of the acetoacetyl-CoA molecule. Using this structural information, we performed a series of site-directed mutagenesis experiments on the enzyme, such as changing residues located near the substrate-binding site, and finally developed a highly efficient CbHBD K50A/K54A/L232Y triple mutant enzyme that exhibited approximately 5-fold higher enzyme activity than did the wild type. The increased enzyme activity of the mutant was confirmed by enzyme kinetic measurements. The highly efficient mutant enzyme should be useful for increasing the production rate of n-butanol.

Numerical Analysis of Enzyme Kinetics for Undergraduate Education in Engineering (공학분야 학부교육용 효소반응속도식의 수치해석)

  • Kim, Jae-Seok;Kim, Jae-Yoon;Lee, Jae-Heung
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • An enzyme-catalized reaction is usually characterized by a very large increase in the rate and high specificity. Kinetics of simple enzyme-catalized reactions are often referred to as Michelis-Menten kinetics. A chemical that interferes with an enzyme's activity is called inhibitor. There are two types of enzyme inhibitions (viz. reversible and irreversible). If an inhibitor attaches to the enzyme with weak bonds, such as hydrogen bonds, the inhibition is usually reversible. Many enzyme reactions are also inhibited reversibly by their corresponding products. The rate of substrate disappearance together with the rate of product formation may be written by nonlinear differential equations. In the present study, numerical analyses of simple enzyme kinetics and inhibited enzyme kinetics are reported for the purpose of undergraduate education in engineering.

  • PDF

New Action Pattern of a Maltose-forming α-Amylase from Streptomyces sp. and its Possible Application in Bakery

  • Ammar, Youssef Ben;Matsubara, Takayoshi;Ito, Kazuo;Iizuka, Masaru;Limpaseni, Tipaporn;Pongsawasdi, Piamsook;Minamiura, Noshi
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.568-575
    • /
    • 2002
  • An $\alpha$-amylase (EC 3.2.1.1) was purified that catalyses the production of a high level of maltose from starch without the attendant production of glucose. The enzyme was produced extracellularly by thermophilic Streptomyces sp. that was isolated from Thailand's soil. Purification was achieved by alcohol precipiation, DEAE-Cellulose, and Gel filtration chromatographies. The purified enzyme exhibited maximum activity at pH 6-7 and $60^{\circ}C$. It had a relative molecular mass of 45 kDa, as determined by SDS-PAGE. The hydrolysis products from starch had $\alpha$-anomeric forms, as determined by $^1H$-NMR. This maltose-forming $\alpha$-amylase completely hydrolyzed the soluble starch to produce a high level of maltose, representing up to 90%. It hydrolyzed maltotetrose and maltotriose to primarily produce maltose (82% and 62%, repectively) without the attendant production of glucose. The high maltose level as a final end-product from starch and maltooligosaccharides, and the unique action pattern of this enzyme, indicate an unusual maltose-forming system. After the addition of the enzyme in the bread-baking process, the bread's volume increased and kept its softness longer than when the bread had no enzyme.

Poly(L-Lactide)-Degrading Enzyme Production by Actinomadura keratinilytica T16-1 in 3 L Airlift Bioreactor and Its Degradation Ability for Biological Recycle

  • Sukkhum, Sukhumaporn;Tokuyama, Shinji;Kitpreechavanich, Vichien
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.92-99
    • /
    • 2012
  • The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at $46^{\circ}C$. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer.