• Title/Summary/Keyword: Enzyme

Search Result 14,078, Processing Time 0.035 seconds

Purification and Characterization of Guar Galactomannan Degrading $\alpha$-Galactosidase from Aspergillus oryzae DR-5

    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.863-867
    • /
    • 2004
  • $\alpha$-Galactosidase from A. oryzae DR-5 was induced in the presence of melibiose, raffinose, galactose, and locust bean galactomannan. The enzyme was purified to homogeneity by precipitation with acetone followed by ion-exchange chromatography using DEAE-Sephacel. The purified enzyme showed a single band in both nondenaturing-PAGE and SDS-PAGE. The enzyme was a glycoprotein in nature by activity staining. The molecular weight of the purified enzyme was 93-95 kDa by SDS-PAGE. The enzyme exhibited the optimum pH and temperature at 4.7 and $60^\circ{C}$, respectively. $\alpha$-Galactosidase activity was strongly inhibited by $Ag^{2+}, Hg^{2+}, Cu^{2+}$, and galactose. EDTA, 1,10-phenanthraline, and PMSF did not inhibit the enzyme activity, whereas N-bromosuccinimide completely inhibited enzyme activity. Investigation by TLC showed complete hydrolysis of stachyose and raffinose in soymilk in 3 h at pH 5.0 and $50^\circ{C}$.

Changes in Availability of Toxic Trace Elements (TTEs) and Its Effects on Soil Enzyme Activities with Amendment Addition

  • Lee, Sang-Hwan;Park, Misun;Kim, Min-Suk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.134-144
    • /
    • 2020
  • In-situ stabilization is a remediation method using amendments to reduce contaminant availability in contaminated soil. We tested the effects of two amendments (furnace slag and red mud) on the availability of toxic trace elements (TTEs) and soil enzyme activities (dehydrogenase, phosphatase, and urease). The application of amendments significantly decreased the availability of TTEs in soil (p < 0.05). The decreased availability of TTE content in soils was accompanied by increased soil enzyme activities. We found significant negative relationships between the TTE content assessed using Ca(NO3)2-, TCLP, and PBET extraction methods and soil enzyme activities (p < 0.01). Soil enzyme activities responded sensitively to changes in the soil environment (pH, EC, and availability of TTEs). It could be concluded that soil enzyme activities could be used as bioindicators or ecological indicators for soil quality and health in environmental soil monitoring owing to their high sensitivity to changes in soil.

Construction of Bifunctional Fusion Enzyme between Maltooligosyltrehalose Synthase and Maltooligosyltrehalose Trehalohydrolase of Sulfolobus acidocaldarius and Overexpression in E. coli

  • Kim, Chung Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.240-245
    • /
    • 2000
  • Two genes encoding maltooligosyltrehalose synthase (SaMTS) and maltooligosyltrehalose trehalohydrolase (SaMTH) were isolated from a hyperthermophilic microorganism, Sulfolobus acidocaldarius (ATCC 49462). ORFs of the SaMTS and SaMTH genes are 2,163 and 1,671 bp long and encode 720 and 556 amino acid residues, respectively. A bifunctional fusion enzyme (SaMTSH) was constructed through the gene fusion of SaMTS and SaMTH. Recombinant SaMTS, SaMTH, and SaMTSH fusion enzyme were overexpressed in E. coli BL21. SaMTS and SaMTH produced trehalose and maltotriose from maltopentaose in a sequential reaction. SaMTSH fusion enzyme catalyzed the sequential reaction in which the formation of maltotriosyltrehalose was followed by hydrolysis leading to the synthesis of trehalose and maltotriose. The SaMTSH fusion enzyme showed the highest activity at pH 5.0-5.5 and $70-75^{\circ}C$. SaMTS, SaMTH, and SaMTSH fusion enzyme were active in soluble starch, which resulted in the production of trehalose.

  • PDF

Quality Properties and Carotenoid Pigments of Yellow Sweet Potato Puree (황색고구마 퓨레의 품질과 Carotenoid색소)

  • 정순택;임종환;강성국
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.4
    • /
    • pp.596-602
    • /
    • 1998
  • Two kinds of sweet potato puree were prepared with Benihayato cultivar of yellow sweet potato with or without $\alpha$-amylase enzyme treatment. Chemical and rheological properties of enzyme-treated puree were different from those of control puree. Reducing sugar content and iodine value increased by $\alpha$-amylase enzyme treatment, while alcohol insoluble solids and viscosity decreased by enzyme treatment. However, the changes of carotenoid content were not significantly different. Hunter-b-values(yellowness) were 27.19 and 23.54 for no enzyme-treated puree(NTP) and enzyme-treated puree(ETP), respectively. Hunter-a values(redness) were 2.24 and 6.05 for NTP abd ETP, respectively. Content of total carotenoid of canned puree heated at 13$0^{\circ}C$ for 30 min decreased by 59 percents.

  • PDF

Studies on the pretense produced by Penicillium species (Penicillium속(屬)이 생산(生産)하는 alkaline pretease에 관(關)하여)

  • Kim, Kyung-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 1977
  • The alkaline protease was isolated from the culture of Penicillium species (P-46) grown in the wheat bran media. The crude purification of this enzyme was carried out by extraction with distilled water and precipitated with 0.7-saturated ammonium sulfate, then dialysis for 3days. The activity of this enzyme was determined by Folin's colorimetric method. The results were as follows; 1. The optimum pH and temperature of this enzyme were pH 8.4 and $45^{\circ}C$. 2. This enzyme was stable at pH $7.0{\sim}9.0$. 3. This enzyme was not inactivated by treatment in lower temperature than $30^{\circ}C$. 4. The activity of this enzyme was strongly inhibited by $Hg^{++}$ and $Cu^{++}$, but slightly by $Ag^+$ 5. This enzyme was not inhibited by cystein, thiourea, ${\varepsilon}-aminocaproic$ acid, 2, 4-DNP, EDTA but strongly inhibited by PCMB.

  • PDF

Chemical composition and Stabilities of Invertase from Korean Ginseng, Panax ginseng (고려인삼(Panax RiwenR) Invertase의 화학조성과 안정성)

  • 김용환;김병묵
    • Journal of Ginseng Research
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 1990
  • The chemical composition and stabilities of the purified ginseng invertase were investigated. The purified enzyme was found to be a glycoprotein composed of 80.2% protein and 19.7% total sugar. The protein component of the enzyme was composed of acidic amino acid (9.3%), basic amino acid (48.9%), nonpolar amino acid (21.4%), polar amino acid (20.4%) and 6.1% S-containing amino acid. It showed especially high contents of histidine and serine. The enzyme was inactivated almost completely by the treatment with some proteases (papain, pepsin. trypsin, pancreatin and microbial alkaline pretense) and protein denatllrants (8M urea and 6M guanidine-HC1), bolt not with glyrosidase (${\alpha}$-amylase, ${\beta}$-amylase. glcoamylese and cellullase). btonosaccharides sllch as glilrose, fructose, galactose and mannose did not exert any influence on the enzyme activity. The activity of the enzyme was inhibited by Ag+, Mn2+, Hg2+, Zn2+ and Al3+, whereas Ca2+, Mg2+, Ba2+ and Fe3+ gave rather activating effects on the enzyme activity. The enzyme was relatively stable in the VH range of VH 6 and 8, and at the temperatures below 35$^{\circ}C$.

  • PDF

Operation Modes Can Affect the Activity of Immobilized Enzyme onto Silk Fibroin Nanofibrous Membrane

  • Oh, Hanjin;Lee, Ki Hoon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.322-325
    • /
    • 2013
  • In the present study, we report that the selection of operation mode is important to take the full advantage of nanofibrous membrane in enzyme immobilization. Silk fibroin nanofibrous membrane has been prepared by electrospinning, and a-chymotrypsin was immobilized as a model enzyme. When the immobilized enzyme was operated in the membrane reactor mode, the Michaelis constant, Km, was lower and the Vmax was higher compared to the batch reactor mode. No concentration gradient was observed in the membrane reactor mode and the immobilized enzyme was stable even after 7 times of re-use. Our results suggests that the enzyme immobilized nanofibrous membrane should be operated in the membrane reactor mode rather than in the bath reactor mode.

Stabilization of Enzyme for Application to Cosmetic Products (효소 화장품 개발을 위한 효소 안정화 기술)

  • 김무성;이동철;이성구;강병영;선보경;안수선;심영철;강학희
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.81-92
    • /
    • 2000
  • Development of stabilized enzyme was attempted for cosmetic applications. Papain, a proteolytic enzyme, was stabilized through conjugation with a soluble carbohydrate biopolymer, SC-glucan$^{TM}$ . With a novel structure of the conjugation site, stability of the enzyme was significantly enhanced such that more than 90% of the initial activity retained after a month storage at 45$^{\circ}C$, while no activity were detected in native enzyme or enzyme simply mixed with SC-glucan$^{TM}$ after the storage. Conjugation with SC-glucan$^{TM}$ not only extended the half-life of the enzyme on storage at higher temperature, but was also found to protect enzymes against some components contained in cosmetic products for skin care. Cosmetic lotion containing 1 % papain conjugate was more effective and less irritative in exfoliating stratum corneum of human skin than the lotion containing 5% lactic acid, one of the current popular exfoliating agents.gents.

  • PDF

Effect of Light on Development of Microbody Functions in the Cotyledons of Rape (Brassica napus L.) Seedlings (유채 종자의 Microbody 기능 발달에 미치는 빛의 영향)

  • 피문자
    • Journal of Plant Biology
    • /
    • v.25 no.2
    • /
    • pp.73-81
    • /
    • 1982
  • The changes in activities of glyoxysomal and peroxisomal enzymes during the transition from fat degradation to photosynthesis were investigated with the cotyledns of rape (Brassica napus L.) seedlings. The development and disappearance of glyoxysomal enzyme (isocitrate lyase, EC 4.1.3.1; malate dehydrogenase, EC 1.1.1.37; catalase, EC 1.11.1.6) activities took place independently of light. It is concluded that the mobilization of storage fat is independent of photomorphogenesis. During early periods of development in the dark of light (days 1 through 3), the glyoxysomal enzyme activities were relatively high and the enzyme activities rose to a peak at 3rd day after sowing. Thereafter, the activities decreased gradually. While glyoxysomal enzyme activities were dropping, the peroxisomal enzyme (glycolate oxidase, EC 1.1.3.1) activities were increasing rapidly during the transition period in the light. Moreover, the changes of enzyme activities of the common microbody marker, catalase, indicated both functional patterns. The enzyme patterns in rape cotyledons indicate that the glyoxysomal function of microbodies is replaced by the peroxisomal function of these organelles during the transition from fat degradation to photosynthesis.

  • PDF

Changes of Digestive Enzyme Activity in Slime Flounder, Micromus achne Larvae with Growth and Development (찰가자미, Micromus achne 자어의 성장과 발달에 따른 소화효소 활성의 변화)

  • 박상언;임한규;한현섭;이종하;임영수;이종관;이상민
    • Journal of Aquaculture
    • /
    • v.16 no.4
    • /
    • pp.233-239
    • /
    • 2003
  • Growth and activities of digestive enzymes in slime flounder (Microstomus achne) larvae were measured from hatching to near the end of larval development (day 58). Larvae reared under starved and fed conditions and the changes of acid phosphatase (ACPase) specific activity, alkaline phosphatase (ALPase) specific activity, trypsin-like enzyme activity and pepsin-like enzyme activity were described with growth and developmental stage of larvae. Total length of the starved larvae was gradually increased for 7 days post hatching and then almost unchanged. Total length of the fed larvae ranged from 5.13$\pm$0.178 mm at the day of hatching to 13.43$\pm$1.395 mm at 58 days after hatching. In starved group, dry body weight decreased from 0.l0$\pm$0.020 mg at the day of hatching to 0.05$\pm$0.012 mg at 12 days after hatching. Dry body weight of fed larvae decreased during the prelarva stage like starved group and then gradually increased. ACPase and ALPase specific activity in the starved larvae increased until all larvae died, however those activities in the fed larvae increased until 20 days and then decreased until 58 days after hatching, with no significant difference between groups. Trypsin-like enzyme activity in the starved larvae was unchanged until 3 days and then was the highest on 5 days after hatching, but not detected after completion of yolksac absorption. Those of fed larvae decreased until 3 days and sharply increased until completion of yolksac absorption. The highest trypsin-like enzyme activity in the fed group was observed at 20 days after hatching. Trypsin-like enzyme activity in the fed larvae was significantly higher than that in the starved larvae from 8 days after hatching. Pepsin-like enzyme activity was increased in 5 days after hatching in both groups. There was significant difference at 8 and 10 days after hatching between both groups. Based on above results, digestive enzyme activities were correspondingly changed to a growth and morphological transformation. Trypsin-like enzyme and pepsin-like enzyme activities are able to be a useful indices for health and growth status in larval slime flounder, because there was significant difference in digestive enzyme activities with developmental stages, growth or feed supply.