• Title/Summary/Keyword: Enzyme

Search Result 14,078, Processing Time 0.051 seconds

α-Glucosidase inhibitory activity and protease characteristics produced by Bacillus amyloliquefaciens (Bacillus amyloliquefaciens로부터 생산된 protease 특성 및 α-glucosidase 저해활성)

  • Lee, Rea-Hyun;Yang, Su-Jin;Hwang, Tae-Young;Chung, Shin-Kyo;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.727-734
    • /
    • 2015
  • In this study, three GRAS (generally recognized as safety) strain was isolated from Doenjang and Cheonggukjang and identified as a protease-producing microorganism, following the appearance of a clear zone around its colony when cultured on a medium containing skim milk. Based on an analysis of the nucleotide sequence of 16S ribosomal RNA, the strains wereas identified as Bacillus amyloliquefaciens and wereas therefore named Bacillus amyloliquefaciens CDD5, Bacillus amyloliquefaciens CPD4, and Bacillus amyloliquefaciens CGD3. Here, we analyzed the protease and ${\alpha}$-glucosidase inhibitory activities of the three B. amyloliquefaciens strains. Among the isolated strains, B. amyloliquefaciens CGD3 exhibited the highest protease activity (9.21 U/mL, 24 hr). The protease activities of B. amyloliquefaciens CDD5 and B. amyloliquefaciens CPD4 reached 1.14 U/mL and 8.02 U/mL, respectively, at 48 hr. The proteases from the three B. amyloliquefaciens strains showed the highest activities within a pH range of 8.0-9.0 at $50^{\circ}C$, and casein was found to be the preferred substrate on evaluating enzyme activity in the substrate specificity assay. The B. amyloliquefaciens strains exhibited maximal growth when the nutrient broth medium had an initial pH within the range of 5.0-10.0, 6-9% sodium chloride (NaCl), and 5% glucose. B. amyloliquefaciens CDD5 exhibited a low ${\alpha}$-glucosidase inhibition rate (5.32%), whereas B. amyloliquefaciens CPD4 and B. amyloliquefaciens CGD3 exhibited relatively higher inhibition rates of 96.89% and 97.55%, respectively.

Change of physicochemical properties, phytochemical contents and biological activities during the vinegar fermentation of Elaeagnus multiflora fruit (보리수 열매 식초 발효 중 이화학적 특성, phytochemical 함량 및 생리활성 변화)

  • Cho, Kye Man;Hwang, Chung Eun;Joo, Ok Soo
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.125-133
    • /
    • 2017
  • This study evaluated the changes of physiochemical properties, phytochemical contents, and biological activities during the vinegar fermentation of Elaeagnus multiflora fruit. The contents of pH and reducing sugar decreased from 3.55 and 6.88 mg/mL 3.34 and 2.13 mg/mL, respectively. However the acidity increased from 0.48% to 5.48% during the vinegar fermentation. The alcohol contents increased up to a maximum value of 6.6% at 20 days, and it then decreased at the end fermentation days (2.0%). The viable numbers of acetic acid bacteria and yeasts increased from 4.32 log CFU/mL and 3.23 log CFU/mL at 10 days to 5.4 log CFU/mL and 5.5 log CFU/mL during the spontaneous fermentation, respectively. The major organic acids were acetic acid (38.84 mg/mL), lactic acid (4.92 mg/mL), and malic acid (1.51 mg/mL). The soluble phenolic and flavonoid contents increased from 0.79 mg/mL and 0.12 mg/mL of initial fermentation day to 1.22 mg/mL and 0.14 mg/mL during the spontaneous fermentation. Content of epicatechin gallate decreased from $168.1{\mu}g/mL$ at 10 days to $115.97{\mu}g/mL$. However the content of gallic acid increased from $18.52{\mu}g/mL$ to $95.07{\mu}g/mL$ during fermentation. After 60 days of the fermentation, the antioxidant and digestive enzyme inhibitory activities were 71.35% (DPPH), 79.27% (ABTS), 68.72% (${\cdot}OH$), 85.42% (${\alpha}$-glucosidase), 52.12% (${\alpha}$-amylase), and 53.66% (pancreatic lipase), respectively.

Fermentation Characteristics of Cheese Slurry prepared from Caseinates (카세인을 이용한 치즈곤죽의 발효특성)

  • Jang, Hae-Dong;Lee, Hyong-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.389-398
    • /
    • 1985
  • To shorten the processing of cheese slurry, four different slurries, ie, Control, Cheddar 1 and 2, and Italian-type that were made of Na-caseinates, cream, trace elements, lactic culture, and enzymes were fermented at $30^{\circ}C$ for 7days with daily stirring. PH, titratable acidity, soluble nitrogen, viable cell count, active SH groups, total volatile fatty acid, free fatty acid, electrophoretic patterns of degraded caseins, and viscosity were analyzed to investigate physicochemical properties of fermented slurries. Acid production was accelerated in the cheese slurries with protease than that without the enzyme and PH of the former was decreased after three days of fermentation to 4.90. The Change of titratable acidity agreed to PH patterns. Soluble nitrogen of the Control slurry was increased slowly for four days and then rapidly to 40% of total nitrogen while those containing protease to 70%. The protease of lactic cultures used (Streptococcus lactis and Streptococcus cremoris) broke down as-casein more rapidly than $\beta$-casein and most proteins were degraded to peptides and amino acids after three days of fermentation. Total volatile fatty acids were increased by added lipase and free fatty acids composition analyzed by GLC in cheddar slurry with 0.00001% lipase was similar to that of commercial cheddar cheese, while that in Italian-type slurry was a half of that in commercial Italian cheese. Active SH groups were increased in the cheese slurries with glutathione from fourth day of fermentation. The viscosity of slurries decreased very rapidly by addition of protease.

  • PDF

Incorporation of RAPD linkage Map Into RFLP Map in Glycine max (L, ) Merr (콩의 RAPD 연관지도를 RFLP 연관지도와 합병)

  • Choi, In-Soo;Kim, Yong-Chul
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.280-290
    • /
    • 2003
  • The incorporation of RAPD markers into the previous classical and RFLP genetic linkage maps will facilitate the generation of a detailed genetic map by compensating for the lack of one type of marker in the region of interest. The objective of this paper was to present features we observed when we associated RAPD map from an intraspecific cross of a Glycine max$\times$G. max, 'Essex'$\times$PI 437654 with the public RFLP map developed from an interspecific cross of G. max$\times$G. soja. Among 27 linkage groups of RAPD map, eight linkage groups contained probe/enzyme combination RFLP markers, which allowed us the incorporation of RAPD markers into the public RFLP map. Map position rearrangement was observed. In incorporating L.G.C-3 into the public RFLP linkage group a1 and a2, both pSAC3 and pA136 region, and pA170/EcoRV and pB170/HindIII region were in opposite order, respectively. And, pk400 was localized 1.8 cM from pA96-1 and 8.4 cM from pB172 in the public RFLP map, but was localized 9.9 cM from i locus and 18.9 cM from pA85 in our study. A noticeable expansion of the map distances in the intraspecific cross of Essex and PI 437654 was also observed. Map distance between probes pA890 and pK493 in L.G.C-1 was 48.6 cM, but it was only 13.3 cM in the public RFLP map. The distances from the probe pB32-2 to pA670 and from pA670 to pA668 in L.G. C-2 were 50.9 cM and 31.7 cM, but they were 35.9 cM and 13.5 cM in the public RFLP map. The detection of duplicate loci from the same probe that were mapped on the same or/and different linkage group was another feature we observed.

Purification of Human HtrA1 Expressed in E. coli and Characterization of Its Serine Protease Activity (E. coli에서 발현된 human HtrA1 단백질의 정제와 HtrA1의 serine protease 활성 조건에 관한 연구)

  • Kim, Kyung-Hee;Kim, Sang-Soo;Kim, Goo-Young;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1133-1140
    • /
    • 2006
  • Human HtrA1 (High temperature requirement protein A1) is a homologue of the E. coli periplasmic serine protease HtrA. A recent study has demonstrated that HtrA1 is a serine protease involved in processing of insulin like growth factor binding protein (ICFBP), indicating that it serves as an important regulator of IGF activity. Additionally, several lines of evidence suggest a striking correlation between proteolytic activity of HtrA1 serine protease and the pathogenesis of several diseases; however, physiological roles of HtrA1 remain to be elucidated. We used the pGEX bacterial expression system to develop a simple and rapid method for purifying HtrA1, and the recombinant HtrA1 protein was utilized to investigate the optimal conditions in executing its proteolytic activity. The proteolytically active HtrA1 was purified to approximately 85% purity, although the yield of the recombinant HtrA1 protein was slightly low $460{\mu}g$ for 1 liter E. coli culture). Using in vitro endoproteolytic cleavage assay, we identified that the HtrA1 serine protease activity was dependent on the enzyme concentration and the incubation time and that the best reaction temperature was $42^{\circ}C$ instead of $37^{\circ}C$. We arbitrary defined one unit of proteolytic activity of the HtrA1 serine protease as 200nM of HtrA1 that cleaves half of $5{\mu}M\;of\;{\beta}-casein$ during 3 hr incubation at $37^{\circ}C$. Our study provides a method for generating useful reagents to investigate the molecular mechanisms by which HtrA1 serine protease activity contributes in regulating its physiological function and to identify natural substrates of HtrA1.

Characteristics of Ju-Back and Effect of Ju-Back Fertilizer on Growth of Crop Plants (주류생산 부산물인 주박의 특성 규명 및 주박이 작물생육에 미치는 영향)

  • Lee, Jung-Hoon;Park, Sung-Min;Park, Chi-Duck;Jung, Hyuck-Jun;Kim, Hyun-Soo;Yu, Tae-Shick
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1562-1570
    • /
    • 2007
  • This experiment was conducted to develop fertilizer which promotes plant growth as well as suppressing pathogenic fungi. The fertilizer was made from the mixture of Ju-Back (Korean rice wine cake) and indigenous rhizosphere-bacterium. The main ingredients of Ju-Back were investigated as 6.04% total nitrogen, 42.59% total carbohydrate, 1.01% available phosphate, 73.42% organic matter, 7.72% potassium oxide, 1.35% calcium oxide, 0.53% magnesium oxide. The enzyme activities of Ju-Back were estimated to be 980 units/g for ${\alpha}-amylase$, 300 units/g for glucoamylase, and 1800 units/g for acid pretense. Indigenous rhizosphere bacteria which produced antifungal agent were isolated from soil, and was selected KMU-13 strain which can antagonize against various plant pathogenic fungi (Botrytis cinerea KACC 40573, Sclerotinia sclerotiorum KACC 41065, Fusairum oxysporum KACC 40052, Pythium aphanidermatum KACC 40156, Phytophthora capsici KACC 40476 and Glomerella cingulata KACC 40299). KMU-13 strain was identified as Bacillus subtilis KMU-13 by biochemical and 16s rDNA analysis. The organic fertilizer was made as prototype which was composed 20% Ju-Back, 70% carrier, 9.7% microorganism cultivated solution, 0.3% trace-element. We also investigated an application of fertilizer using Ju-Back for cultivating lettuce (Lactuca sativar) which were grown in three soil conditions that had chemical fertilizer, barnyard manure, lime power, urea, potassium chloride and superphosphate as a control, the whole quantity (80 kg/10a) of posted fertilizer with the control and the half quantity (40 kg/10a) with the control. The growth characteristics were examined and analysed with several weeks interval from 3 weeks to 8 weeks on head length (cm), head width (cm/head), number of leaf and fresh weight (g/plant). The results are summarized as follows. The head width and fresh weight of lettuce were the highest at posted fertilizer 1 (whole quantity) was applied chemical, organic matter (Ju-Back) and carrier. The head length was the highest at posted fertilizer 2 (whole quantity) was applied Ju-Back only.

Extract of Rubus coreanus Fruits Increases Expression and Activity of Endothelial Nitric Oxide Synthase in the Human Umbilical Vein Endothelial Cells (복분자 추출물에 의한 내피세포 NO 합성효소의 활성과 발현 증가)

  • Yoon, Hyun-Joong;Park, Soo-Young;Oh, Sung-Tack;Lee, Kee-Young;Yang, Sung-Yeul
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.44-55
    • /
    • 2011
  • This study aimed to investigate the effects of water extract of Rubus coreanus (RCE) on the expression and activity of endothelial nitric oxide synthase (eNOS), as well as its signal transduction pathways in human umbilical vein endothelial cells (HUVECs). The specific inhibitors of NOS show RCE treatment increases NO production in HUVECs due to the up-regulation of eNOS rather than iNOS. The real-time expression level of eNOS mRNA was also increased upon RCE treatment in HUVECs. While a PKC-specific inhibitor, RO-317549, did not alter RCE-induced NO production in HUVECs, tamoxifen (estrogen receptor-specific inhibitor), PD98059 (ERK-specific inhibitor) and LY-294002 (PI3K/Akt-specific inhibitor) did have suppressive effects. Increased NO production by RCE seems to result from a higher level of active eNOS (pSer1177). Specifically, inhibition of ERK not only decreased the level of active eNOS, but also increased the inactive form of the enzyme (pThr495) in HUVECs. This study suggests that RCE treatment increases NO production in HUVECs due to the increased expression and activity of eNOS. It is also shown that RCE-induced eNOS activation occurs partly through the binding of RCE to the estrogen receptor, along with ERK and PI3K/Akt-dependent signal transduction pathways. In addition, the regulatory binding proteins of eNOS including Hsp90 and caveolin-1 were related to these effects of RCE on eNOS activity in HUVECs.

Overexpression and Activity Analysis of Cystathionine γ-Lyase Responsible for the Biogenesis of H2S Neurotransmitter (새로운 신경전달물질 H2S 발생 효소, cystathionine γ-lyase의 대량발현 조건과 활성측정)

  • Kim, Kyoung-Ran;Byun, Hae-Jung;Cho, Hyun-Nam;Kim, Jung-Hyun;Yang, Seun-Ah;Jhee, Kwang-Hwan
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.119-126
    • /
    • 2011
  • There is a growing recognition of the significance of $H_2S$ as a biological signaling molecule involved in vascular and nervous system functions. In mammals, two enzymes in the transsulfuration pathway, cystathionine ${\beta}$-synthase (CBS) and cystathionine ${\gamma}$-lyase (CGL), are believed to be chiefly responsible for $H_2S$ biogenesis. Genetic inborn error of CGL leads to human genetic disease, cystathioninuria, by accumulating cystathionine in the body. This disease is secondarily associated with a wide range of diseases including diabetes insipidus and Down's syndrome. Although the human CGL (hCGL) overexpression is essential for the investigation of its function, structure, reaction specificity, substrate specificity, and protein-protein interactions, there is no clear report concerning optimum overexpression conditions. In this study, we report a detailed analysis of the overexpression conditions of the hCGL using a bacterial system. Maximum overexpression was obtained in conditions of low culture temperature after inducer addition, performing low aeration during overexpression, and using a low concentration inducer (0.1 mM, IPTG) for induction. Expressed hCGL was purified by His-tag affinity column chromatography and confirmed by Western blot using hCGL antibody and enzyme activity analysis. We also report that the His tag with TEV site attached protein exhibits 76% activity for ${\alpha}-{\gamma}$ elimination reaction with L-cystathionine and 88% for ${\alpha}-{\beta}$ elimination reaction with L-cysteine compared to those of wild type hCGL, respectively. His tag with TEV site attached protein also exhibits a 420 nm absorption maximum, which is attributed to the binding cofactor, pyridoxal 5'-phosphate (PLP).

Anti-inflammatory Activities of an Ethanol Extract of Sargassum macrocarpum in Lipopolysaccharide (LPS)-stimulated RAW 264.7 Macrophages (Lipopolysaccaride로 유도된 Raw 264.7 세포에서 큰열매모자반 에탄올 추출물의 항염증 활성)

  • Cheon, Ji Min;Kim, Hyang Suk;Choi, Eun Ok;Kwon, Da Hye;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1437-1444
    • /
    • 2017
  • Sargassum macrocarpum is a widely distributed marine brown algae found in the North Pacific. The objective of this study was to evaluate the anti-inflammatory activity of an ethanol extract of S. macrocarpum (EESM). First, we investigated the anti-inflammatory activities of EESM in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. EESM treatment suppressed nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production and inhibited the expressions of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, the expression of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-1 beta ($IL-1{\beta}$), was decreased in a dose dependent manner. Investigation of the signaling pathways of nuclear factor kappa B ($NF-{\kappa}B$), phosphoinositide-3-kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs) revealed suppression of $NF-{\kappa}B$ translocation from the cytosol to nucleus by EESM treatment. The phosphorylation of the Akt and ERK proteins was also inhibited by EESM treatment. EESM treatment also stimulated the expression of the heme oxygenase-1 (HO-1) enzyme and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2). These results suggest that EESM has anti-inflammatory activity and could have potential uses in the field of nutraceuticals.

Different Physiological Activity of Selected Rice Cultivars to Diphenylether Herbicide, Oxyfluorfen - IV. Different Activity of Antioxidative Enzymes (Oxyfluorfen에 대한 내성(耐性) 감수성(感受性) 벼품종(品種)의 생리활성(生理活性) 기구(機構) - IV. 항산화효소(抗酸化酵素) 활성(活性))

  • Kuk, Y.I.;Guh, J.O.
    • Korean Journal of Weed Science
    • /
    • v.16 no.3
    • /
    • pp.210-220
    • /
    • 1996
  • Ten-day-old seedlings of the oxyfluorfen-tolerant and -susceptible rice cultivars with barnyardgrass, a typical susceptible weed were soaked in oxyfluorfen at $10^{-6}M$ for 2 hrs kept for 24 hrs in the dark, and exposed to light for 0, 2, 4, or 6 hrs to investigate changes in the activity and isozyme of antioxidative enzymes. The activities of antioxidative enzymes of APOX, CAL, POX, NR, GR, MDAR and SOD in the tolerant and susceptible rice cultivate themselves didn't show any difference but the activity in the susceptible barnyardgrass was very low in comparison with rice cultivars. The activity of lipoxygenase tended to be some slightly higher in the susceptible rice cultivars and barnyardgrass than in the tolerant rice cultivars. The activities of MDAR, POX, GR and SOD, antioxidative enzymes, were higher in the tolerant rice cultivars than in the susceptible rice cultivars and barnyardgrass after the treatment of oxyfluorfen. After the treatment of oxyfluorfen, in the change of POX isozyme, the activity of C band in the tolerant rice cultivars increased with increased concentration but it didn't in the susceptible rice cultivar. The activity of B band decreased slightly at $10^{-4}M$ in the susceptible barnyardgrass. Isozyme of GR, SOD and AO by the treatment of oxyfluorfen, the activity of each band between the tolerant and susceptible rice cultivars showed no difference but GR isozyme C band was disappeared in the susceptible barnyardgrass at $10^{-4}M$. In the change of esterase isozyme resulting from the treatment of oxyfluorfen, the activities of B, C and D bands decreased more in the susceptible rice cultivars than in tolerant rice cultivars, and A band was disappeared in the susceptible barnyardgrass at $10^{-4}M$.

  • PDF