• 제목/요약/키워드: Enzymatic process

검색결과 336건 처리시간 0.027초

Hydrogen Peroxide, Its Measurement and Effect During Enzymatic Decoloring of Congo Red

  • Woo, Sung-Whan;Cho, Jeung-Suk;Hur, Byung-Ki;Shin, Dong-Hoon;Ryu, Keun-Gap;Kim, Eun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권5호
    • /
    • pp.773-777
    • /
    • 2003
  • The color of Congo red hinders the spectrometric measurements of a concentration of hydrogen peroxide and enzyme activity (Horseradish peroxidase; HRP) during enzymatic decoloring of Congo red. In this study, a method was developed to measure peroxidase activity and hydrogen peroxide concentration in the presence of Congo red. The oxidation product of HRP/hydrogen peroxide and ABTS(2,2'-azino-bis-(3-ethylbenzotriazoline-6-sulfonic acid)) formed a dark green color. The spectrum of this product showed absorption bands at 420 nm and 734 nm. When compared with the Congo red spectrum, the absorption at 734 nm of this product did not overlap with Congo red, thus making the hydrogen peroxide measurement possible even in the presence of Congo red. Kinetic study of decoloring of Congo red performed by this method showed that the decoloring reaction followed the Michaelis-Menten kinetics. Pulse feeding of hydrogen peroxide, upon depletion, significantly increased the decoloring of Congo red. This result shows that this newly developed technique can monitor, predict, and improve the enzymatic decoloring process.

Biomass의 고효율 효소당화에 의한 적합한 Attrition Coupled Bioreactor개발에 관한 연구 ; Agitated Bead Type Bioattritor를 활용한 섬유소 당화 (Development and Evaluation of the Attrition Coupled Bioreactors for Enzymatic Hydrolysis of Biomass; Agitated Bead Type Bioattritor for Enzymatic Hydrolysis of Cellulose)

  • 이용현;박진서;윤대모
    • KSBB Journal
    • /
    • 제4권2호
    • /
    • pp.78-86
    • /
    • 1989
  • 에너지소모를 최소화하고 최대의 당화효과를 얻을 수 있는 고효율 당화장치의 개발을 목표로 impeller교반형 bioattritor를 설계, 제작하여 불용성 섬유소를 기질로 실험하였다. Bioattrotor의 효용성과 효소당화촉진 mechan-ism을 규명하였으며, 최적운전조건을 검토하였다. 분쇄 마찰매체함유 반응기에 일정한 탄성계수를 지닌 spiral spring coil을 내장한 torzue측정장치를 개발, 부하되는 torque, power, 그리고 소요에너지를 측정하여 이를 당화촉진과 비교함으로서 bioattritor의 경제성을 검토하였다. 분쇄마찰매체의 첨가량 및 종류, impeller형태, 교반속도는 중요한 요소로서 작용하였다. 비록 더 연구가 필요하나 분쇄마찰매체의 교반에 소모되는 동력은 당화 촉진효과의 증대에 따른 당화시간의 단축과 섬유소의 고효율 전환에 따른 고농도당의 확보등에 의해 보상되리라 예상된다.

  • PDF

Application of Enzymatic Hydrolysis for the Yield Optimization in Froth-Flotation of ONP

  • Ryu, Jeong-Yong;Song, Bong-Keun;Song, Jae-Kwang
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.1
    • /
    • pp.129-136
    • /
    • 2006
  • Although cleaner and cheaper deinking of ONP could be performed at the neutral or low alkaline condition excessive loss from froth-flotation is unavoidable and so reduction of alkali or caustic soda dosage sacrifices recycling yield. Now the new trade-off regarding alkali dosage versus flotation yield is urgently required in order to set the optimized neutral or low alkaline deinking process of ONP. Lipase from Thermomyces Lanuginosus has an effect on desizing and deacetylation reaction and it could be applied to the stock of pre flotation secondary stage in order to reduce the flotation reject without the sacrifice of optical properties of flotation accepts. Instead of inorganic base, lipase could be applied as a biochemical catalyst for the selective modification of valuable hydrophobic particles in deinking stock, for example cellulose fines and inorganic fillers covered by hydrophobic additives or contaminants. When the enzymatic hydrolysis of ester bond could be made on the surface of hydrophobic particulates, unwanted float of fine particles could be prevented. Now the enhancement of flotation selectivity or the modification of the hydrophobicity of deinking stock is expected to be promoted by the enzymatic pre treatment. And the reduction of recycling cost with the saves of raw material, recovered paper would be possible as a result.

  • PDF

해조류 파래로부터 지질 추출에 미치는 전처리 방법의 영향 (Effect of Pretreatment Method on Lipid Extraction from Enteromorpha intestinalis)

  • 정귀택;박돈희
    • KSBB Journal
    • /
    • 제29권1호
    • /
    • pp.22-28
    • /
    • 2014
  • In this study, we investigate the effect of pretreatment method on lipid extraction from Enteromorpha intestinalis using physical, thermo-chemical, and enzymatic process such as ultrasonication, high temperature treatment, freezing, microwave irradiation, osmotic shock, pH shock, homogenizing, and enzymatic treatment. In pretreatment with separated lipid extraction, the high extraction yield was obtained by high temperature treatment ($121^{\circ}C$ for 5 min) with 0.1 N HCl, which is 1.4 times higher than that of control. In pretreatment with direct lipid extraction, the high extraction yields were obtained by 0.1 N HCl pretreatment, microwave irradiation (700W, 1 min with twice), and 10% NaCl pretreatment, which is 1.45 times higher than that of control. In the result of enzymatic pretreatment with 17 kinds of enzymes, Cellic CTec II showed the high extraction yield of 5.3%, and which is 1.9 times higher than that of control. Moreover, the extraction yield was increased by the increase of enzyme amounts. In 10% enzyme amount, about 5.8% yield was obtained.

Optimization of Bio-based Succinic Acid Production from Hardwood Using the Two Stage pretreatments

  • Jung, Ji Young;Jo, Jong Soo;Kim, Young Wun;Yoon, Byeng Tae;Kim, Choon Gil;Yang, Jae Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권2호
    • /
    • pp.111-122
    • /
    • 2013
  • The steam explosion-chemical pretreatment is a more effective wood pretreatment technique than the conventional physical pretreatment by accelerating reactions during the pretreatment process. In this paper, two-stage pretreatment processes of hardwood were investigated for its enzymatic hydrolysis and the succinic acid yield from the pretreated solid. The first stage pretreatment was performed under conditions of low severity to optimize the amount of solid recovery. In the second stage pretreatment washed solid material from the first stage pretreatment step was impregnated again with chemical (alkaline or chlorine-based chemicals) to remove a portion of the lignin, and to make the cellulose more accessible to enzymatic attack. The effects of pretreatment were assessed by enzymatic hydrolysis and fermentation, after the two stage pretreatments. Maximum succinic acid yield (16.1 g $L^{-1}$ and 77.5%) was obtained when the two stage pretreatments were performed at steam explosion -3% KOH.

Nitrogen Adsorption Analysis of Wood Saccharification Residues

  • Yang, Han-Seung;Tze, William Tai Yin
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권2호
    • /
    • pp.232-242
    • /
    • 2017
  • The objective of this study was to examine changes in the porosity and internal structure of wood as it goes through the process of saccharification (extraction of fermentable sugars). This study also examined the use of different drying methods to prepare samples for characterization of internal pores, with particular emphasis on the partially disrupted cell wall. Aspen wood flour samples after dilute acid pretreatment followed by enzymatic hydrolysis were examined for nitrogen adsorption. The resulting isotherms were analyzed for surface area, pore size distribution, and total pore volume. Results showed that freeze drying (with sample pre-freezing) maintains the cell wall structure, allowing for examination of saccharification effects. Acid pretreatment (hemicellulose removal) doubled the surface area and tripled the total volume of pores, which were mostly 10-20 nm wide. Subsequent enzymatic hydrolysis (cellulose removal) caused a 5-fold increase in the surface area and a ~ 11-fold increase in the total volume of pores, which ranged from 5 to 100 nm in width. These results indicate that nitrogen adsorption analysis is a feasible technique to examine the internal pore structure of lignocellulosic residues after saccharification. The information on the pore structure will be useful when considering value-adding options for utilizing the solid waste for biofuel production.

Pretreatment and enzymatic saccharification process of rapeseed straw for production of bioethanol

  • Lee, Heon-Hak;Jeon, Min-Ki;Yoon, Min-Ho
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.641-649
    • /
    • 2016
  • This study was conducted to evaluate the yield of bio-ethanol produced by separate hydrolysis and fermentation (SHF) with the pretreated rapeseed straw (RS) using crude enzyme of Cellulomonas flavigena and Saccharomyces cereviase. Crude enzyme of C. flavigena showed enzymatic activity of 14.02 U/mL for CMC 133.40 U/mL, for xylan 15.21 U/mL, for locust gum and 15.73 U/mL for rapeseed straw at pH 5.0 and $40^{\circ}C$, respectively. The hemicellulose contents of RS was estimated to compromise 36.62% of glucan, 43.20% of XMG (xylan + mannan + galactan), and 2.73% of arabinan by HPLC analysis. The recovering ratio of rapeseed straw were investigated to remain only glucan 75.2% after 1% $H_2SO_4$ pretreatment, glucan 45.44% and XMG 32.13% after NaOH, glucan 44.75% and XMG 5.47% after $NH_4OH$, and glucan 41.29% and XMG 41.04% after hot water. Glucan in the pretreatments of RS was saccharified to glucose of 45.42 - 64.81% by crude enzyme of C. flavigena while XMG was made into to xylose + mannose + galactose of 58.46 - 78.59%. Moreover, about 52.88 - 58.06 % of bio-ethanol were obtained from four kinds of saccharified solutions by SHF using S. cerevisiae. Furthermore, NaOH pretreatment was determined to show the highest mass balance, in which 21.22 g of bio-ethanol was produced from 100 g of RS. Conclusively, the utilization of NaOH pretreatment and crude enzyme of Cellulomonas flavigena was estimated to be the best efficient saccharification process for the production of bio-ethanol with rapeseed straw by SHF.

Cellulase에 의한 폭쇄재의 가수분해에 있어서 탄수화물조성 및 효소흡착량 변화 (Changes of Carbohydrate Composition and Enzyme Adsorption on the Hydrolysis of Steam Exploded Wood by Cellulase)

  • 양재경;김철환
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권4호
    • /
    • pp.67-78
    • /
    • 2001
  • 신갈나무와 이태리포플러 칩을 25 kg/$cm^2$의 압력에서 6분간 폭쇄처리하였다. 폭쇄재는 수산화나트륨(NaOH), 차아염소산나트륨(NaClO), 아염소산나트륨($NaClO_2$)을 사용한 단독 또는 다단의 공정으로 화학처리 하였다. 폭쇄재의 다단처리는 시료중의 리그닌 제거에 상당한 효과를 나타냈다. 대조구인 폭쇄재 기질의 효소 가수분해율은 25%였지만, 다단 화학약품 처리된 폭쇄재는 약 80%에 근접하는 가수분해율을 나타냈다. 효소에 의한 분해율은 수종간에 차이가 났다. 폭쇄재의 다단 화학약품 처리는 효소 가수분해액에 있어서 글루코오스 함유 비율을 증가시켰다. Cellulase의 흡착은 기질의 리그닌 함량과 비례하여 증가하였지만, 반면에 기질의 결정화도, 공극면적 및 비표면적은 효소흡착에 큰 영향을 미치지 않았다. 본 연구에서 제시된 전처리 당화공정에 따르면, 100 kg의 활엽수재로부터 약 37~40 kg의 글루코오스 생산이 가능하리라 생각된다.

  • PDF

억새 바이오매스 전처리에서 압출 처리가 액상 암모니아 침지 처리에 미치는 영향 (The Effect of Extrusion Treatment on Aqueous Ammonia Soaking Method in Miscanthus Biomass Pretreatment)

  • 박선태;구본철;최용환;문윤호;안승현;차영록;김중곤;안기홍;서세정;박돈희
    • 신재생에너지
    • /
    • 제6권4호
    • /
    • pp.6-14
    • /
    • 2010
  • Pretreatment of cellulosic biomass is necessary before enzymatic saccharification and fermentation. Extrusion is a well established process in food industries and it can be used as a physicochemical treatment method for cellulosic biomass. Aqueous ammonia soaking treatment at mild temperatures ranging from 60 to $80^{\circ}C$ for longer reaction times has been used to preserve most of the cellulose and hemicellulose in the biomass. The objective of this study was to evaluate the effect of extrusion treatment on aqueous ammonia soaking method. Extrusion was performed with miscanthus sample conditioned to 2mm of particle size and 20% of moisture content at $200^{\circ}C$ of barrel temperature and 175rpm of screw speed. And then aqueous ammonia soaking was performed with 15%(w/w) ammonia solution at $60^{\circ}C$ for 1, 2, 4, 8, 12 hours on the extruded and raw miscanthus samples respectively. In the combined extrusion-soaking treatment, most compositions removal occurred within 1~2 hours and on a basis of 1 hour soaking treatment values, cellulose was recovered about 85% and other compositions, including hemicellulose, are removed about 50% from extruded miscanthus sample. The combined extrusion-soaking treated and soaking only treated samples were subjected to enzymatic hydrolysis using cellulase and ${\beta}$-glucosidase. The enzymatic digestibility value of combined extrusion-2 hours soaking treated sample was comparable to 12 hours soaking only treated sample. It means that extrusion treatment can shorten the conventional long reaction time of aqueous ammonia soaking. The findings suggest that the combination of extrusion and soaking is a promising pretreatment method to solve both problems for no lignin removal of extrusion and long reaction time of aqueous ammonia soaking.