• 제목/요약/키워드: Enzymatic inhibition kinetics

검색결과 10건 처리시간 0.02초

Estimation of Nitrite Concentration in the Biological Nitritation Process Using Enzymatic Inhibition Kinetics

  • GIL, KYUNG-IK;EUI-SO CHOI
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.377-381
    • /
    • 2002
  • Recently, interests to remove nitrogen in the nitritation process have increased because of its economical advantages, since it could be a short-cut process to save both oxygen for nitrification and carbon for denitrification compared to a typical nitrification. However, the kinetics related with the nitritation process has not yet been fully understood. Furthermore, many useful models which have been successfully used for wastewater treatment processes cannot be used to estimate effluent nitrite concentration for evaluating performance of the nitritation process, since the process rate equations and population of microorganisms for nitrogen removal in these models have been set up only for the condition of full nitrification. Therefore, the present study was conducted to estimate an effluent nitrite concentration in the nitritation process with a concept of enzymatic inhibition kinetics based on long-term laboratory experiments. Using a nonlinear least squares regression method, kinetic parameters were accurately determined. By setting up a process rate equation along with a mass balance equation of the nitrite-oxidizing step, an effluent nitrite concentration in the nitritation process was then successfully estimated.

점막 추출액중 치로트로핀 유리호르몬의 효소적 분해 및 안정화 (Enzymatic Degradation and Stabilization of Thyrotropin Releasing Hormone in Various Rabbit Mucosa Extracts)

  • 전인구;신동원
    • Journal of Pharmaceutical Investigation
    • /
    • 제27권2호
    • /
    • pp.99-108
    • /
    • 1997
  • To evaluate the feasibility of mucosal delivery of thyrotropin releasing hormone (TRH) through various mucosae, enzymatic degradation and stabilization of TRH in the nasal, rectal and duodenal extracts of rabbits were studied. TRH in the extracts was assayed by HPLC and its degradation was found to follow apparent first-order kinetics. The residual concentrations of TRH in the mucosal extracts of nasal, rectal and duodenal segments after 24 hr of incubation were found to be $65.1({\pm}1.1),\;19.7({\pm}2.7)$ and 0%, and in the serosal extracts, $65.6({\pm}5.5),\;75.2({\pm}1.1)$ and $68.7({\pm}1.4)%$, respectively. This result suggests that there is a significant difference in the activity of TRH-degrading enzymes among the sites of administration. The inhibition of TRH degradation in the mucosa extracts was kinetically investigated using various additives such as thimerosal, benzalkonium chloride, disodium edetate, ${\sigma}-phenanthroline$, dithiothreitol and dithioerythritol, and $IC_{50}$ values of inhibitors were calculated. The results obtained showed that thimerosal (0.5 mM) and benzalkonium chloride (0.141 mM) protected TRH from the enzymatic degradation in all the mucosa extracts more than 95% after 24 hr of incubation.

  • PDF

Cybernetic Modeling of Simultaneous Saccharification and Fermentation for Ethanol Production from Steam-Exploded Wood with Brettanomyces custersii

  • Shin Dong-Gyun;Yoo Ah-Rim;Kim Seung-Wook;Yang Dae-Ryook
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1355-1361
    • /
    • 2006
  • The simultaneous saccharification and fermentation (SSF) process consists of concurrent enzymatic saccharification and fermentation. In the present cybernetic model, the saccharification process, which is based on the modified Michaelis-Menten kinetics and enzyme inhibition kinetics, was combined with the fermentation process, which is based on the Monod equation. The cybernetic modeling approach postulates that cells adapt to utilize the limited resources available to them in an optimal way. The cybernetic modeling was suitable for describing sequential growth on multiple substrates by Brettanomyces custersii, which is a glucose- and cellobiose-fermenting yeast. The proposed model was able to elucidate the SSF process in a systematic manner, and the performance was verified by previously published data.

효소 억제제에 의한 토끼의 점막 추출액중 로이신엔케팔린 및 [D-알라$^2$-로이신엔케팔린아미드의 분해 억제 (Inhibition of Enzymatic Degradation of Leucine Enkephalin and $[D-Ala^2]$-Leucine Enkephalinamide in Various Rabbit Mucosal Extracts by Inhibitors)

  • 전인구;박인숙;현진
    • Journal of Pharmaceutical Investigation
    • /
    • 제26권3호
    • /
    • pp.175-185
    • /
    • 1996
  • To inhibit the enzymatic degradation of leucine enkephalin (Leu-Enk) and its synthetic analog. $[D-ala^2]$-leucine enkephalinamide (YAGFL), in the nasal, rectal and vaginal mucosal and serosal extracts of rabbits, effects of enzyme inhibitors such as amastatin (AM), puromycin (PM), thiorphan (TP), thimerosal (TM), EDTA, N-carboxymethyl-Phe-Leu (CPL), phenylethyl alcohol (PEA), phenylmercuric acetate (PMA), benzalkonium chloride (BC) and modified cyclodextrins, alone or in combination, were observed by assaying the pentapeptides staying intact during incubation. Mucosa extracts were prepared by exposing freshly-excised mucosal specimens mounted on Valia-Chien cells to isotonic phosphate buffer while stirring. The degradation of Leu-Enk and YAGFL followed the apparent first-order kinetics. The half-lives (mean) in the nasal, rectal and vaginal mucosal extracts were found to be 1.07, 0.33 and 1.14 hr for Leu-Enk, and 16.9, 6.2 and 6.8 hr for YAGFL, respectively. AM or PM, which is an aminopeptidase inhibitor, did not show a sufficient inhibition of Leu-Enk $(50\;{\mu}g/ml)$ degradation in all kinds of extracts. $Dimethyl-{\beta}-cyclodextrin\;(DM-{\beta}-CyD)$ decreased the degradation rate constants of Leu-Enk about 2 or 3 times, comparing with no additive. However, the use of mixed inhibitors of AM $(50\;{\mu}M)$/TM (0.25 mM)/EDTA (5 mM) resulted in a full stabilization of Leu-Enk by decreasing the degradation rate constants 67.3, 161.3 and 113.8 times far the nasal, rectal and vaginal mucosal extracts, respectively, comparing with no inhibitor. With mixed inhibitors, Leu-Enk remained intact more than 90% after 6 hr-incubation. In the stabilization of YAGFL, hM, TP or CPL alone showed little efffct, and some additives demonstrated a considerable inhibition of YAGFL degradation in the rank order of TM > BC > EDTA. However, the addition of mixed inhibitors such as TM (0.5 mM) and EDTA (5 mM) into the extracts protected YAGFL from the degradation by more than 85% even after 24 hr-incubation, suggesting almost complete inhibition of YAGFL degradation in the extract. On the other hand, $DM-{\beta}-CyD\;or\;hydroxypropyl-{\beta}-cyclodextrin$ (10%) were also found to retard enzymatic degradation rates of YAGFL markedly, and resulted in staying intact more than 80% of YAGFL in the nasal and vaginal mucosal extracts, and more than 60% in the rectal mucosal extract after 16 hr-incubation.

  • PDF

2,4-Dichlorophenol Enzymatic Removal and Its Kinetic Study Using Horseradish Peroxidase Crosslinked to Nano Spray-Dried Poly(Lactic-Co-Glycolic Acid) Fine Particles

  • Dahili, Laura Amina;Nagy, Endre;Feczko, Tivadar
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.768-774
    • /
    • 2017
  • Horseradish peroxidase (HRP) catalyzes the oxidation of aromatic compounds by hydrogen peroxide via insoluble polymer formation, which can be precipitated from the wastewater. For HRP immobilization, poly(lactic-co-glycolic acid) (PLGA) fine carrier supports were produced by using the Nano Spray Dryer B-90. Immobilized HRP was used to remove the persistent 2,4-dichlorophenol from model wastewater. Both extracted (9-16 U/g) and purified HRP (11-25 U/g) retained their activity to a high extent after crosslinking to the PLGA particles. The immobilized enzyme activity was substantially higher in both the acidic and the alkaline pH regions compared with the free enzyme. Optimally, 98% of the 2,4-dichlorophenol could be eliminated using immobilized HRP due to catalytic removal and partly to adsorption on the carrier supports. Immobilized enzyme kinetics for 2,4-dichlorophenol elimination was studied for the first time, and it could be concluded that competitive product inhibition took place.

Kinetics of Horseradish Peroxidase-Catalyzed Nitration of Phenol in a Biphasic System

  • Kong, Mingming;Zhang, Yang;Li, Qida;Dong, Runan;Gao, Haijun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.297-305
    • /
    • 2017
  • The use of peroxidase in the nitration of phenols is gaining interest as compared with traditional chemical reactions. We investigated the kinetic characteristics of phenol nitration catalyzed by horseradish peroxidase (HRP) in an aqueous-organic biphasic system using n-butanol as the organic solvent and ${NO_2}^-$ and $H_2O_2$ as substrates. The reaction rate was mainly controlled by the reaction kinetics in the aqueous phase when appropriate agitation was used to enhance mass transfer in the biphasic system. The initial velocity of the reaction increased with increasing HRP concentration. Additionally, an increase in the substrate concentrations of phenol (0-2 mM in organic phase) or $H_2O_2$ (0-0.1 mM in aqueous phase) enhanced the nitration efficiency catalyzed by HRP. In contrast, high concentrations of organic solvent decreased the kinetic parameter $V_{max}/K_m$. No inhibition of enzyme activity was observed when the concentrations of phenol and $H_2O_2$ were at or below 10 mM and 0.1 mM, respectively. On the basis of the peroxidase catalytic mechanism, a double-substrate ping-pong kinetic model was established. The kinetic parameters were ${K_m}^{H_2O_2}=1.09mM$, ${K_m}^{PhOH}=9.45mM$, and $V_{max}=0.196mM/min$. The proposed model was well fit to the data obtained from additional independent experiments under the suggested optimal synthesis conditions. The kinetic model developed in this paper lays a foundation for further comprehensive study of enzymatic nitration kinetics.

후지 사과 Polyphenol Oxidase의 특성 및 활성억제 (Characteristics and Inhibition of Polyphenol Oxidase from Fuji Apples)

  • 최언호;정동선;조남숙;심영현
    • Applied Biological Chemistry
    • /
    • 제30권3호
    • /
    • pp.278-284
    • /
    • 1987
  • 사과의 건조, 가공 중의 갈변을 방지하기 위한 기초 조사로서 후지 사과로부터 추출한 crude polyphenol oxidase의 특성과 열에 대한 저항성, 갈변 저해제의 저해 효과 등을 조사하였다. Catechol을 기질로 사용하였을 때 polyphenol oxidase의 최적 pH는 5.5, 최적온도는 $20^{\circ}C$, $K_m$ 값은 0.14M이었고, 열불활성화는 유사일차반응을 보였으며 이때 활성화에너지$(E_a)$와 Z값은 각각 23.0cal/kmol, $19.7^{\circ}C$였다. 기질에 따른 친화력은 o-diphenol, 특히 chlorogenic acid에 대하여 높았고, monophenol과 m-diphenol, p-diphenol에 대해서는 나타나지 않았다. Polyphenol oxidase에 의한 갈변은 thiourea와 potassium metabisulfite는 10mM에서, L-cysteine과 ascorbic acid, sodium diethyldithiocarbamate는 1mM에서 현저하게 저해되었다.

  • PDF

Phytol, SSADH Inhibitory Diterpenoid of Lactuca sativa

  • Bang, Myun-Ho;Choi, Soo-Young;Jang, Tae-O;Kim, Sang-Kook;Kwon, Oh-Shin;Kang, Tae-Cheon;Won, Moo-Ho;Park, Jin-Seu;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • 제25권5호
    • /
    • pp.643-646
    • /
    • 2002
  • The succinic semialdehyde dehydrogenase (SSADH) inhibitory component was isolated from the EtOAc fraction of Lactuca sativa through repeated column chromatography; then, it was identified as phytol, a diterpenoid, based on the interpretation of several spectral data. Incubation of SSADH with the phytol results in a time-dependent loss of enzymatic activity, suggesting that enzyme modification is irreversible. The inactivation followed pseudo-first-order kinetics with the second-rate order constant of $6.15{\times}10^{-2}mM^{-1}min^{-1}.$ Complete protection from inactivation was afforded by the coenzyme $NAD^{+}$, whereas substrate succinic semialdehyde failed to prevent the inactivation of the enzyme; therefore, it seems likely that phytol covalently binds at or near the active site of the enzyme. It is postulated that the phytol is able to elevate the neurotransmitter GABA levels in central nervous system through its inhibitory action on one of the GABA degradative enzymes, SSADH.

가열 및 화합물에 의한 후지 사과 Peroxidase의 활성억제 (Inactivation of Peroxidase from Fuji Apples by Heat and Chemical Treatments)

  • 최언호;정동선
    • Applied Biological Chemistry
    • /
    • 제30권3호
    • /
    • pp.285-290
    • /
    • 1987
  • 사과의 건조, 가공 중의 갈변을 방지하기 위한 기초 조사로서 후지 사과로부터 추출한 crude peroxidase의 열불활성화와 갈변 저해제의 저해 효과 등을 조사하였다. Peroxidase의 최적 pH와 온도는 p-phenylenediamine과 $H_2O_2$를 기질로 하였을 때 각각 5.5와 $35^{\circ}C$이었고, 열불활성화 반응은 biphasic으로 heat labile fraction의 $E_a$와 Z값은 각각 48.2kcal/mol 과 $11.2^{\circ}C$, heat resistant fraction의 $E_a$와 Z값은 각각 36.3kcal/mol과 $14.9^{\circ}C$이었다. Peroxidase에 의한 갈변은 sodium diethyldithiocarbamate와 potassium metabisulfite는 10mM에서, L-cysteine과 ascorbic acid는 1mM에서 현저하게 저해되었다.

  • PDF

토끼의 수종 점막 추출액중 $[D-Ala^2]-Methionine$ Enkephalinamide의 분해 및 안정화 (Degradation and Stabilization of $[D-Ala^2]-Methionine$ Enkephalinamide in Various Rabbit Mucosa Extracts)

  • 전인구;양윤정
    • Journal of Pharmaceutical Investigation
    • /
    • 제22권3호
    • /
    • pp.173-183
    • /
    • 1992
  • To study the feasibility of transmucosal delivery of $[D-ala^2]-methionine$ enkephalinamide (YAGFM), its enzymatic degradation and stabilization in various rabbit mucosal extracts were investigated by HPLC method. The degradation of YAGFM was observed to follow the first-order kinetics and the half-lives of YAGFM in the nasal, rectal and vaginal mucosal extracts were found to be 25.7, 3.0 and 7.8 hr, respectively. However, there was no significant difference in degradation rates of YAGFM between the mucosal and serosal extracts obtained from the same mucosal membrane. This finding suggests that even a synthetic enkephalin analog, which is designed to be resistent to aminopeptidases, needs to be fully protected from the enzymatic degradation in mucosal sites for the delivery of the analog through mucosal routes. To inhibit the degradation of YAGFM in various mucosal extracts, effects of enzyme inhibitors such as bestatin (BS), amastatin (AM), thiorphan (TP), thimerosal (TM) and EDTA, alone or in combination, and modified cyclodextrins were observed by assaying YAGFM staying intact during 24 hr-incubation at $37^{\circ}C$. It was found from the results that mixed inhibitors such as TM (0.5 mM)/EDTA (5 mM) or AM $(50{\mu}M)/TM$ (0.5 mM)/EDTA (5 mM) provided very useful means for the stabilization in various mucosal extracts. The latter was found to protect YAGFM from the degradation in the nasal, rectal, and vaginal mucosal extracts by 90.9, 90.4 and 91.3%, respectively, after 24 hr-incubation, suggesting almost complete inhibition of YAGFM-degrading enzymes present in the incubation mixture. However, BS $(50{\mu}M)$, AM 50 $(50{\mu}M)$ or TP$(50{\mu}M)$ alone did not reveal sufficient inhibition except TM (0.5 mM) or EDTA (5 mM). The adddition of $2-hydroxylpropyl-{\beta}-cyclodextrin$(10%) to the nasal mucosal extract, and $dimethyl-{\beta}-cyclodextrin$(10%) to the rectal and vaginal mucosal extracts reduced the first-order rate constants for the degradation of YAGFM by 5.8, 17.3 and 8.9 times, respectively, compared to those with no additive.

  • PDF