• Title/Summary/Keyword: Enzymatic hydrolysis pretreatment

Search Result 102, Processing Time 0.016 seconds

Lactic acid Production from Hydrolysate of Pretreated Cellulosic Biomass by Lactobacillus rhamnosus (전처리된 섬유소계 바이오매스로부터 Lactic acid생산)

  • Ahn, Su Jin;Cayetano, Roent Dune;Kim, Tae Hyun;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Lactic acid, the most widely occurring hydroxy-carboxylic acid, has traditionally been used as food, cosmetic, pharmaceutical, and chemical industries. Even though it has tremendous potential for large scale production and use in a wide variety of applications, high cost lactic acid materials are primarily problems. Lactic acid can be obtained on either by fermentation or chemical synthesis. In recent years, the fermentation approach has become more successful because of the increasing market demand for naturally produced lactic acid. Generally, lactic acid was produced from pure starch or from glucose. As an alternative, biomass which is the most abundant renewable resources on earth have been considered for conversion to readily utilizable hydrolysate. In this study, we conducted the fermentation method to produce L(+)-lactic acid production from pretreated hydrolysate was investigated by Lactobacillus rhamnosus ATCC 10863. The hydrolysate was obtained from pretreatment process of biomass using Ammonia percolation process (AP) followed by enzymatic hydrolysis. In order to effectively enhance lactic acid conversion and product yield, controlled medium, temperature, glucose concentration was conducted under pure glucose conditions. The optimum conditions of lactic acid production was investigated and compared with those of hydrolysate.

Hepatoprotective effect of Hippocampus abdominalis hydrolysate (Hippocampus abdominalis 유래 단백질 가수분해물의 간 보호 효과)

  • Son, Moa;Moon, Jun young;Park, Sanggyu;Cho, Moonjae
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.265-271
    • /
    • 2016
  • Recently, liver damage contributes to big percentage of the morbidity and mortality rates worldwide. Excessive intake of alcohol is one of the major causes of liver injury. When liver injury is repeated and becomes chronic, it leads to development of fibrosis and cirrhosis. In the liver, TGF-${\beta}$ is a profibrogenic cytokine, which participates in various critical events cause liver fibrosis. Seahorse (Hippocampus abdominalis) is a common traditional Chinese medicine and has been widely used for centuries. Seahorse has been known to have a variety of bioactivities, such as anti-oxidant, anti-fatigue, and anti-tumor. Peptide is one of the main compounds of seahorse. In this study, we isolated enzymatic hydrolysate from seahorse H. abdominalis by alcalase hydrolysis and investigated the effect of the hydrolysate on liver injury. In the present in vitro studies, the hydrolysate increases cell viability of Chang cells and protects Huh7 cells from ethanol toxicity. In addition, the hydrolysate inhibits TGF-${\beta}$-induced responses. In vivo studies show that the pretreatment of hydrolysate reduces alcohol-induced increases of serum Glutamic oxaloacetic acid transaminase and Glutamic pyruvate transaminase activities and increases liver weight and body weight. These results suggest that seahorse may have a hepatoprotective effect.