• Title/Summary/Keyword: Environmentally friendly

Search Result 1,694, Processing Time 0.028 seconds

Performance comparison of cascade refrigerator and two-stage compression refrigerator (캐스케이드 냉동시스템과 2단 압축 1단 팽창식 냉동 시스템의 성능 비교)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.625-631
    • /
    • 2014
  • In order to obtain a low evaporation temperature ranging from $-30^{\circ}C{\sim}-50^{\circ}C$, a cascade refrigeration system and two-stage compression one-stage expansion refrigeration system is required. However, the research results of performance comparison of these refrigeration system are very scarce. This paper were compared the performance characteristics of R744-R404A cascade refrigeration system and R404A two-stage compression refrigeration system. The COP of R404A two-stage compression refrigeration system is about 36~57% greater than that of R744-R404A cascade refrigeration system in the range of evaporation temperature of $-30^{\circ}C{\sim}-50^{\circ}C$. But R404A two-stage compression refrigeration system is unstable because COP is significantly changed when evaporating temperature and compressor efficiency decreased. In particular, when compressor efficiency decreased, COP is significantly decreased. In this case, not efficient for long-term use. Whereas R744-R404A cascade refrigeration system using natural refrigerants. Therefore, it is environmentally friendly. And this system is high-efficiency refrigeration system. The reason it can be configured by selecting the suitable refrigerant at high-temperature side and low-temperature side. From the above results, select the appropriate low temperature refrigeration system by considering the environmental and performance aspects.

Color Control and Durability Improvement of Yellow Poplar (Liriodendron tulipifera) by Heat Treatments (열처리에 의한 백합나무 재색 제어와 내부후성 제고)

  • Yoon, Kyung-Jin;Eom, Chang-Deuk;Park, Jun-Ho;Kim, Ho-Yong;Choi, In-Gyu;Lee, Jun-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.487-496
    • /
    • 2009
  • The sapwood of yellow poplar is very bright while its heartwood is usually greenish which changes to dark brown with weathering. This difference in color value between sapwood and heartwood causes difficulty in using yellow poplar as higher value added materials such as interior finish and furniture part. In this study, hot-water treatment, vacuum-heat treatment and oven-heat treatment were carried out to reduce the difference in color value between heartwood and bright sap wood and to increase durability. FT-IR analysis, contact angle measurement and decay test were carried out to find out the mechanism of functional group change and the increment of durability by heat treatment. The result of decrement ratio of color difference were 45.7% by hot-water treatment, 26.8% by vacuum-heat treatment, and 60.2%, 87.8%, and 88.8% by $180^{\circ}C$, $200^{\circ}C$ and $220^{\circ}C$ oven-heat treatments respectively. Furthermore, it has been found that oven-heat treatment causes decrement of mass loss by decay in this study. It is suggested that oven-heat treatment could be environmentally friendly preservative treatment without chemicals.

Color Change and Consumer Preferences towards Color of Heat-Treated Korean White Pine and Royal Paulownia Woods

  • Hidayat, Wahyu;Qi, Yue;Jang, Jae Hyuk;Park, Byung Ho;Banuwa, Irwan Sukri;Febrianto, Fauzi;Kim, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.213-222
    • /
    • 2017
  • Heat treatment of wood is an attractive alternative environmentally-friendly treatment to add value of less valuable woods by improving color, dimensional stability, and natural durability. To improve the color properties of Korean white pine (Pinus koraiensis) and royal paulownia (Pauwlonia tomentosa), we treated the woods at $160^{\circ}C$, $180^{\circ}C$, $200^{\circ}C$, and $220^{\circ}C$ for 2 hours. Color change after heat treatment was evaluated using the CIE-Lab color system and survey was conducted to determine the consumer preferences towards color of heat-treated wood. Lightness ($L^*$) decreased with increasing temperature and the higher degree of change was obtained in royal paulownia. The red/green chromaticity ($a^*$) in both wood decreased after heat treatment at $160^{\circ}C$, and constantly increased after heat treatment at $180^{\circ}C$ to $220^{\circ}C$. Yellow/blue chromaticity ($b^*$) in Korean white pine tended to increase after heat treatment at $160^{\circ}C$, then decreased gradually afterwards. In royal paulownia, $b^*$ values linearly increased with increasing temperature. Overall color change (${\Delta}E^*$) increased with increasing temperature with higher degree obtained in royal paulownia. Samples with the clamps in both wood species showed lower degree of the change in $L^*$, $a^*$, b and ${\Delta}E^*$. The results of the consumer preferences test showed that the darker colors of heat-treated woods were more preferred by consumers compared to the lighter colors of untreated woods. Consequently, heat treatment could enhance the color properties of Korean white pine and royal paulownia woods for value added products.

Characteristics of Fertility of Cucumber Cultivated Soils at Controlled Horticulture in Chungnam Province

  • Choi, Moon-Tae;Yun, Yeo-Uk;Lee, Jin-Il;Lee, Jong-Eun;Jung, Suck-Kee;Nam, Yun-Gyu;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.262-268
    • /
    • 2014
  • The management of soil chemical properties is very important to sustainable agriculture of many horticultural crops, including cucumber. This study was conducted to find the optimal soil properties of environmentally friendly agriculture in controlled horticulture. Soil chemical properties of 267 samples were collected from soil in Chungnam Province. The average of pH, EC, OM, available $P_2O_5$, exchangeable K, Ca, and Mg was 6.1, $5.38dS\;m^{-1}$, $34g\;kg^{-1}$, $1,321mg\;kg^{-1}$, $1.50cmol_c\;kg{-1}$, $10.3cmol_c\;kg{-1}$, and $3.4cmol_c\;kg{-1}$, respectively. The organic matter content in silty clay loam was significantly higher than in the other soil textures, whereas the pH, EC, exchangeable K, and Mg in loamy fine sand showed significantly lower among soil textures. The EC value and exchangeable Mg concentration were highest in mountain foot-slope soils. The frequency distribution within optimum range of soil chemical properties was 26.2%, 30.3%, 2.3%, 3.8%, 3.4%, and 6.7% for pH, OM, available $P_2O_5$, exchangeable K, Ca, and Mg, respectively. Especially, excessive portion of available $P_2O_5$ and exchangeable Ca were 94.0% and 94.4%, respectively. The EC value and organic matter content of soil samples were positive correlation with all chemical properties except soil pH. In principle component analysis of chemical properties in soil samples, the percentage of variance explained by PC 1 was 52.2%, while PC 2 explained 21.3% of the variance, for a cumulative total of 73.5%. In conclusion, these results are considered to improve soil nutrient management for sustainable controlled horticulture.

Development of Novel Materials for Reduction of Greenhouse Gases and Environmental Monitoring Through Interface Engineering

  • Hirano, Shin-Ichi;Gang, Seok-Jung L.;Nowotny, Janusz-Nowotny;Smart, Roger-St.C.Smart;Scrrell, Charles-C.Sorrell;Sugihara, Sunao;Taniguchi, Tomihiroi;Yamawaki, Michio;Yoo
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.635-653
    • /
    • 1999
  • The present work considers work considers research strategies to address global warming. Specifically, this work considers the development of technologies of importance for the reduction of greenhouse gas emission and, especially, the materials that are critical to these technologies. It is argued that novel materials that are essential for the production of environmentally friendly energy may be developed through a special kind of engineering: interface engineering, rather than through classical bulk chemistry. Progress on the interface engineering requires to increase the present state of understanding on the local properties of materials interfaces and interfaces processes. This, consequently, requires coordinated international efforts in order to establish a strong background in the science of materials interfaces. This paper considers the impact of interfaces, such as surfaces and grain boundaries, on the functional properties of materials. This work provides evidence that interfaces exhibit outstanding properties that are not displayed by the bulk phase. It is shown that the local interface chemistry and structure and entirely different than those of the bulk phase. In consequence the transport of both charge and matter along and across interfaces, that is so important for energy conversion, is different than that in the bulk. Despite that the thickness of interfaces is of an order to a nanometer, their impact on materials properties is substantial and, in many cases, controlling. This leads to the conclusion that the development of novel materials with desired properties for specific industrial applications will be possible through controlled interface chemistry. Specifically, this will concern materials of importance for energy conversion and environmental monitoring. Therefore, there is a need to increase the present state of understanding of the local properties of materials interfaces and the relationship between interfaces and the functional properties of materials. In order to accomplish this task coordinated international efforts of specialized research centres are required. These efforts are specifically urgent regarding the development of materials of importance for the reduction of greenhouse gases. Success of research in this area depends critically on financial support that can be provided for projects on materials of importance for a sustainable environment, and these must be considered priorities for all of the global economies. The authors of the present work represent an international research group economies. The authors of the present work represent an international research group that has entered into a collaboration on the development of the materials that are critical for the reduction of greenhouse gas emissions.

  • PDF

Understanding, Exploration, and Development of Tight Gas Reservoirs (치밀가스 저류층의 이해와 탐사개발)

  • Son, Byeong-Kook
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.36-44
    • /
    • 2008
  • Natural gas in tight reservoirs, one of unconventional hydrocarbon resources, has become a significant exploration and exploitation targets. Tight gas reservoirs are the gas-bearing rocks that commonly have a permeability of less than 0.1 millidarcy (mD). Tight gas reservoirs are characterized by extensive and deep locations as well as abnormal pressure such as over- or under-pressure. The tight gas reservoirs are independent of structural or stratigraphic traps, whereas conventional gases normally occur at these traps. Tight gas reservoirs can be productive when stimulated by hydraulic fracturing. Better production areas within the tight reservoir beds are referred to as sweet spots that are commonly caused by natural fractures, which should be understood and identified to enhance the recovery of the gas from tight reservoirs. The exploration and production techniques allow the commercial production of tight gas, one of environmentally friendly resources. Slant and horizontal wells have best production when they intersect the fractures. Gas production from the tight reservoirs has rapidly grown in U.S. and Canada. Indeed, the U.S. gas production of tight sandstones increases from 11.1% in 1990 to 24.1% in 2005. The presence of tight gas reservoirs has been suggested on the Korean offshore block 6-1. Paradigm shift from conventional to unconventional tight reservoir is required to develop the tight gas from the block.

  • PDF

Distribution of Soil Fertility in Paddy Fields as Affected by Cultivation Methods and Topographical Regions (경작지대 및 재배방법에 따른 논토양의 비옥도 분포)

  • Kim, Dong-Jin;Kang, Da-Seul;Ahn, Byung-Koo;Lee, Jin-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.595-604
    • /
    • 2015
  • Soil chemical properties in paddy fields were found to be varied depending upon different cultivation methods such as environmentally-friendly, conventional, and two-crop farming systems and different topographical regions, namely plain, middle mountainous, and reclaimed land regions. Overall soil pH was found to be in optimal range (pH 5.5~6.5) for rice cultivation, except with conventional cultivation fields of the reclaimed lands in Jeonnam province. Electrical conductivity (EC) was relatively higher in the two-crop cultivation fields than in others. However, the concentrations of available phosphate as $P_2O_5$ were exceptionally higher in the two-crop farming fields, thus in submerged paddy condition the phosphate could be released into streams and rivers. Soil organic matter (SOM) contents were mostly in optimal range ($25{\sim}30g\;kg^{-1}$) for paddy field in Jeonbuk province, but in Jeonnam province they were slightly higher values of the range. The concentrations of available silicate ($SiO_2$) were mostly depended on the cultivation methods and the region, but some of paddy fields contained extremely high $SiO_2$ concentration. Statistical relationships among the soil chemical properties showed as follows: Correlations between EC values and exchangeable cation concentrations, between SOM contents and CEC values, and between available $SiO_2$ concentrations and pH, EC, exchangeable cations, and CEC values were positively significant, whereas total nitrogen concentrations were significantly negatively correlated with the concentrations of exchangeable K and Mg. These results might be very useful to establish benchmark paddy fields contained with certain levels of soil fertility.

Properties of Board Manufactured from Sawdust, Ricehusk and Charcoal (톱밥과 왕겨 및 숯을 이용하여 제조한 보드의 성질)

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.61-75
    • /
    • 2020
  • In this study, the environmentally friendly material charcoal was added to ricehusk, an agricultural by-product, and sawdust, which emerges during the sawing process, to produce board by mixing ratio and concentration levels of ricehusk and charcoal; it then investigated its physical properties for development purposes and achieved the following results. The water absorption and thickness swelling of the compounded board produced per adding ratio of ricehusk and charcoal showed a gradually decreasing tendency along with the increase in adding ratio of the charcoal, and as the density of the compounded board increased, the water absorption decreased, while the thickness swelling increased. The internal bond strength of the compounded board had indicated its highest value of 0.49N/㎟ at the density of 0.7g/㎤. This satisfied the quality standard for KSF 3104 Particleboard. The internal bond strength of the compounded board manufactured per adding ratio of ricehusk and charcoal showed a steady decrease with the decrease in the adding ratio of ricehusk, and an increase in the addingratio of the charcoal. Also, in cases when the ratio of the ricehusk and charcoal by KSF 3104 quality standard were 35:5 and 30:10, it satisfied the quality standard of 15.0-type, whereas it satisfied the 13.0-type quality standard if the ratios were 25:15 and 20:20. It showed a tendency of increasing hardness of the compounded board with the increase in density, and decreasing hardness with the increase in the adding ratio of the charcoal.

Optimization of drying conditions for the conversion of 6-gingerol to 6-shogaol under subcritical water extraction from ginger (아임계수 추출에서 6-gingerol의 6-shogaol 전환을 위한 생강 건조 조건 최적화)

  • Ko, Min-Jung;Nam, Hwa-Hyun;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.447-451
    • /
    • 2019
  • 6-gingerol can be converted to 6-shogaol, one of the predominant active compounds found in ginger, via processing such as drying and extraction. Subcritical water extraction is the environmentally friendly method of extraction of bioactive compounds using only purified water as a solvent. This study investigated subcritical water extraction ($190^{\circ}C$, 15 min) of 6-gingerol, and 6-shogaol from dried ginger (Zingiber officinale) including drying conditions such as temperature (room temperature, 60, $80^{\circ}C$, and freeze drying) and time duration for drying (1-4 h). The amount of 6-gingerol was found to be reduced, and that of 6-shogaol was found to be increased depending upon the water content of dried ginger. Upon oven-drying ginger at $60^{\circ}C$ for 2 h, the maximum yields of 6-gingerol ($0.18{\pm}0.02mg/g$ fresh weight), and 6-shogaol ($0.47{\pm}0.02mg/g$ fresh weight) were obtained upon subcritical water extraction.

Removal of Perchlorate from Salt Water Using Microorganisms (미생물을 이용한 염수의 퍼클로레이트 제거)

  • Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1294-1303
    • /
    • 2019
  • Perchlorate is an anionic pollutant that is very soluble and stable in water. It has been detected not only in soil/ground water but also in surface water, drinking water, food, fish, and crops. Perchlorate inhibits iodine uptake by the thyroid gland and reduces production of thyroid hormones that are primarily responsible for regulation of metabolism. Although various technologies have been developed to remove perchlorate from the environment, biodegradation is the method of choice since it is economical and environmentally friendly. However there is limited information on perchlorate biodegradation in salt environment such as salt water. Therefore this paper reviews biodegradation of perchlorate in salt water and related microorganisms. Most biodegradation research has employed heterotrophic perchlorate removal using organic compounds such as acetate as electron donors. Biodegradation research has focused on perchlorate removal from spent brine generated by ion exchange technology that is primarily employed to clean up perchlorate-contaminated ground water. Continuous removal of perchlorate at up to 10% NaCl was shown when bioreactors were inoculated with enriched salt-tolerant perchlorate-reducing bacteria. However the reactors did not show long-term stable removal of perchlorate. Microorganisms belonging to ${\beta}$- and ${\gamma}$-Proteobacteria were dominant in bioreactors used to remove perchlorate from salt water. This review will help our understanding of perchlorate removal from salt water to develop a decent biotechnology for the process.