• Title/Summary/Keyword: Environmental radioactivity measurements

Search Result 19, Processing Time 0.031 seconds

Analysis of Radioactivity in Coal Fly Ash (비산석탄회의 방사능 농도 분석)

  • Shin, Hyun-Sang;Lee, Myung-Ho;Kim, Mi-Kyung;Park, Doo-Wun;Lee, Chang-Woo;Rhee, Dong-Seok
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.187-193
    • /
    • 1999
  • The specific radioactivity concentrations in the coal fly ash obtained from heat producing stations in Korea were analyzed and its radiological hazard for reuse in construction purpose was evaluated. The concentrations of uranium isotopes in the real fly ash measured by TBP solvent extraction method and $\alpha$-spectrometer were found to be about 116.1 Bq $kg^{-1}$ for $^{238}U$, 5.01 Bq $kg^{-1}$ for $^{235}U$, and 121.2 Bq $kg^{-1}$ for $^{234}U$, respectively. The activity ratio of $^{234}U/^{238}U$, in the coal fly ash was in $1.04\;{\pm}\;0.03$, which is similar to that of uncontaminated Korean soil in natural conditions (1.14). The specific radioactivities of $^{226}Ra,\;^{232}Th,\;and\;^{40}K$ in the coal fly ash were also determined using $\gamma$-spectrometer with a HPGe detector The results showed that $^{226}Ra,\;^{232}Th,\;and\;^{40}K$ in the coal fly ash were in concentrations of $101.7{\sim}113.9$, $39.5{\sim}54.2\;and\;315.0{\sim}990.6$ Bq $kg^{-1}$, respectively. With the specific radioactivities obtained from $\gamma$-spectrometric measurements of the coal fly ash, its radiological hazard for reuse was evaluated. The result showed that the radioactivity of the coal fly ash was in permissible level.

  • PDF

Tritium( $^3$H) Activity Measurement by the Liquid Scintillation Counting Method

  • Hwang, Sun-Tae;Oh, Pil-Jae;Lee, Min-Kie;Kim, Wi-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.299-302
    • /
    • 1994
  • At a nuclear power plant, environmental radioactivity monitoring is routine work for the radiation safety management For the environmental monitoring of tritium($^3$H) activity in water sampled liquid scintillation counting( LSC) method is applied to measure low- energy beta activity from tritium in the samples. The $^3$H activity is measured using the BECKMAN 5801 system at the KRISS( Korea Research Institute of Standards and Science) for evaluating the lower limits of detection( LLD) of $^3$H measurement and the measuring capability of low-level $^3$H activity at four nuclear Power Plant sites. The LSC systems used for low-level $^3$H activity measurements at the nuclear Power Plants are confirmed to satisfy throughout an intercomparison study under the experimental arrangements by the KRISS.

  • PDF

Comparison of Gene Mutation Frequency in $Tradescantia$ Stamen Hair Cells Detected after Chernobyl and Fukushima Nuclear Power Plant Accidents

  • Panek, Agnieszka;Miszczyk, Justyna;Kim, Jin-Kyu;Cebulska-Wasilewska, Antonina
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • Our aim was to investigate the genotoxicity of ambient air in the Krak$\acute{o}$w area after Fukushima Nuclear Power Plant (NPP) accident and compare with results from Chernobyl fallout. For the detection of ambient air genotoxicity the technique for screening gene mutation frequency in somatic cells of the $Tradescantia$ stamen hairs ($Trad$-SH assay) was used. Since 11th of March 2011 (Fukushima NPP accident), several pots containing at least 15 shoots of bioindicating plants were exposed to ambient air at 2 sites in the Krak$\acute{o}$w surrounding area, one in the city center, and about 100 pots in a control site (in the glasshouse of the Institute of Nuclear Physics) Continuous screening of mutations was performed. Progenies of 371,090 cells exposed were analyzed. Mutation frequency obtained in the first 10 days has shown a mean control level (GMF*100=$0.06{\pm}0.01$). At scoring period related to influence of a potential Fukushima fallout, a significant increase of gene mutation frequencies above the control level was observed at each site in the range, 0.10~0.33 depending on the location, (mean value for all sites GMF*100=$0.19{\pm}0.05$) that was associated with a strong expression of toxic effects. In the reported studies following the Chernobyl NPP accident monitoring $in$ $situ$ of the ambient air genotoxicity was performed in the period since April $29^{th}$ till June $3^{rd}$ 1986 also with Trad-SH bioindicator. In general, mutation frequency increases due to Chernobyl fallout(GMF*100=$0.43{\pm}0.02$) were corresponding to fluctuation of radioactivity in the air reported from physical measures, and to published reports about increase in chromosome aberration levels. Although, recent data obtained from monitoring of the ambient air quality in the Krak$\acute{o}$w and surroundings are lower when compared to results reported after Chernobyl NPP accident, though results express a significant increase above the control level and also are corresponding with increased air radioactivity reported from physical measurements. Statistically significant in comparison to control increase in gene mutation rates and more prolonged than that after Chernobyl fallout increase of GMF was observed during the period following the Fukushima NPP failure.

Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

  • Jeong, Meeyoung;Lee, Kyeong Beom;Kim, Kyeong Ja;Lee, Min-Kie;Han, Ju-Bong
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • Odyssey, one of the NASA's Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of $^{40}K$, $^{232}Th$ and $^{238}U$ in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

Individual Doses to the Public after the Fukushima Nuclear Accident

  • Ishikawa, Tetsuo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.53-68
    • /
    • 2020
  • Background: International organizations such as the World Health Organization (WHO) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reported public exposure doses due to radionuclides released in the Fukushima nuclear accident a few years after the event. However, the reported doses were generally overestimated due to conservative assumptions such as a longer stay in deliberate areas designated for evacuation than the actual stay. After these reports had been published, more realistic dose values were reported by Japanese scientists. Materials and Methods: The present paper reviews those reports, including the most recently published articles; and summarizes estimated effective doses (external and internal) and issues related to their estimation. Results and Discussion: External dose estimation can be categorized as taking two approaches-estimation from ambient dose rate and peoples' behavior patterns-and measurements using personal dosimeters. The former approach was useful for estimating external doses in an early stage after the accident. The first 4-month doses were less than 2 mSv for most (94%) study subjects. Later on, individual doses came to be monitored by personal dosimeter measurements. On the basis of these measurements, the estimated median annual external dose was reported to be < 1 mSv in 2011 for 22 municipalities of Fukushima Prefecture. Internal dose estimation also can be categorized as taking two approaches: estimation from whole-body counting and estimation from monitoring of environmental samples such as radioactivity concentrations in food and drinking water. According to results by the former approach, committed effective dose due to 134Cs and 137Cs could be less than 0.1 mSv for most residents including those from evacuated areas. Conclusion: Realistic doses estimated by Japanese scientists indicated that the doses reported by WHO and UNSCEAR were generally overestimated. Average values for the first-year effective doses for residents in two affected areas (Namie Town and Iitate Village) were not likely to reach 10 mSv, the lower end of the doses estimated by WHO.

Indoor radon and thoron from building materials: Analysis of humidity, air exchange rate, and dose assessment

  • Syuryavin, Ahmad Ciptadi;Park, Seongjin;Nirwono, Muttaqin Margo;Lee, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2370-2378
    • /
    • 2020
  • Building materials contribute significantly to the indoor radon and thoron levels. Therefore, parameters that influence the exhalation rates of radon and thoron from building material need to be analyzed closely. As a preliminary study, the effects of humidity on exhalation rates were measured using a system with an accumulation chamber and RAD7 detector for Korean brick, Korean soil, and Indonesian brick. Resulting doses to a person who resides in a room constructed from the building materials were assessed by UNSCEAR method for different air exchange rates. The measurements have revealed that Korean brick exhaled the highest radon and thoron while Indonesian brick exhaled the lowest thoron. Results showed that for a typical low dense material, radon and thoron exhalation rate will increase until reached its maximum at a certain value of humidity and will remain saturated above it. Analysis on concentration and effective dose showed that radon is strongly affected by air exchange rate (ACH). This is showed by about 66 times decrease of radon dose from 0.00 h-1 to those of 0.50 h-1 ACH and decrease by a factor of 2 from 0.50 h-1 to those of 0.80 h-1. In case of thoron, the ACH doesn't have significant effects on effective dose.

Comparison and Optimization of Flux Chamber Methods of Methane Emissions from Landfill Surface Area (매립지 표면의 메탄 발산량 실측을 위한 플럭스 챔버의 방법론적 비교와 최적화)

  • Jeong, Jin Hee;Kang, Su Ji;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.535-542
    • /
    • 2016
  • As one of the most cost-effective methods for surface emission measurements, flux chamber method has been used worldwide. It can be classified into two types: SFC (with slope method) and DFC (with steady-state method). SFC (static flux chamber) type needs only simple equipment and is easy to handle. However, the value of flux might vary with SFC method, because it assumes that the change of concentration in chamber is linear with time. Although more specific equipments are required for DFC (dynamic flux chamber) method, it can lead to a constant result without any ambiguity. We made a self-designed DFC using a small and compact kit, which recorded good sample homogeneity (RSD < 5%) and recovery ( > 90%). Relative expanded measurement uncertainty of this improved DFC method was 7.37%, which mainly came from uncontrolled sweep air. The study shows that the improved DFC method can be used to collect highly reliable emission data from large landfill area.

PM10 and Associated Trace Elements in the Subway Cabin of Daejeon by Instrumental Neutron Activation Analysis (기기 중성자방사화 분석을 이용한 대전 지하철 객차 내 PM10과 미량성분의 특성)

  • Jeong, Jin Hee;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.459-467
    • /
    • 2016
  • In order to assess the pollution status and distribution characteristics of PM and PM-bound species, PM10 samples were collected using mini-volume air sampler at the subway cabin in Daejeon city. Measurements of about 24 elements including toxic metals (e.g., As, Cr, Mn, V, Zn) in PM10 were made by instrumental neutron activation analysis and X-ray fluorescence. The average PM10 concentration was $59.3{\pm}14.5{\mu}g/m^3$ in the subway cabin with a range of 42.2 to $97.4{\mu}g/m^3$, while the associated elemental concentrations were varied in the range of $10^{-3}$ to $10^5ng/m^3$. It was found that the concentration of Fe ($12.5{\mu}g/m^3$) was substantially higher than any other element. The Fe concentration was apportioned by about 20% of the PM10 concentration. The results of factor analysis indicate that there are no more than six sources in the cabin (e.g., brake-nonferrous metal particle, resuspended rail dust, fuel combustion, vehicle exhaust, black carbon, Cr-related).

Effect Evaluation by Activity and Geometry Difference in Calibration on LSC (LSC 장비를 이용한 교정시 Activity 및 Geometry 차이에 의한 영향 평가)

  • Han, Sang-Jun;Lee, Kyung-Jin;Lee, Seung-Jin;Kim, Hee-Gang;Park, Eung-Seop
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • When the calibration on Liquid Scintillation Counter using the Solid $^3H$ Standard Source of 200,000DPM is executed, the uncertainty due to activity and geometry difference, exists. Therefore, this paper intends to evaluate environmental samples comparatively accurately as decreasing this uncertainty existing in the process of calibration. For this, measurements on samples manufactured by $^3H$ Standard Source and sensitivity study were performed. Also, this paper verified calibration results using Radioactivity-Error-Analysis Method, and evaluated quantitatively the effect by geometry and activity difference based on verification result. According to the result of sensitivity study, in case of using the exposure time of 75 sec and Repeat method, the measuring accuracy and precision of about $1{\sim}3%$ were increased in comparison with the existing method. By analysis result, the effect by activity difference did not appear, and a plastic cell existing into Teflon vial made a role as reflector. The less the effect of plastic cells are decreased, the more activity is high, and the effect of those can be neglected at the activity of 200,000 DPM.