• Title/Summary/Keyword: Environmental pressure

Search Result 3,387, Processing Time 0.027 seconds

Development of an Evaluation Method for Flow Rate Performance of Particulate Sampling Pump using Three-pieces Cassette Holder Containing Filters (여과지가 장착된 3단 카세트를 이용한 입자상물질 채취용 펌프의 유량성능 평가방법)

  • Song, Ho-June;Kim, Nam-Hee;Kim, Ki-Youn;Ma, Hye-Lan;Lee, Kwang-Young;Jeong, Jee-Yeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.348-355
    • /
    • 2013
  • Objectives: In working environment measurement, sampling is an important stage for obtaining reliable result as analysis. A personal air sampling pump is one of the most fundamental and important element in the work environment measurement, but it remains at the level of calibrating the flow rate of the pump before and after sampling. There is no checking whether the flow rate set at the initial stage would be hold during sampling. The purpose of this study was to develop a method to evaluate the flow rate performance of particulate sampling pump with three-pieces cassette holder containing filters commonly used to sample particulate. Materials and methods: We tested back pressure of particulate sampling pumps commonly used in Korea with three-pieces cassette holder containing various filters, and tried to find out the combination conditions of filters in accordance with back pressure required by ISO standard 13137. Results: We found out the matrix of sampling media such as three-pieces cassette holder containing filters applicable to the pressure drop required by the ISO standard for evaluating the flow rate stability under increasing pressure drop and long term(8 hour) performance. Conclusions: This evaluation method using sampling media matrix for checking flow rate stability proposed by this study could be very useful tool to find out good performance pumps before sampling.

Study on Analysis for the Slope Monitoring Performance at the Whangryeong Mountain Site (황령산 사면 계측관리 분석에 관한 연구)

  • La Won Jin;Choi Jung Chan;Kim Kyung Soo;Cho Yong Chan
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.429-442
    • /
    • 2004
  • Landslide of the Whanpyeong Mountain which was occurred at Busan Metropolitan City in 1999 belongs to the category of plane failure. Automatic monitoring system to measure horizontal displacement, pore pressure change and load change has operating from reconstruction stage for evaluating rock slope stability (August, 2000$\~$Feburuary, 2002). As a result of the analysis on the monitoring performance data, it is suggested that infiltrated rain water from pound surface discharges rapidly through cut-slope because pressure head of water decreases rapidly after rainfall while rise of pore pressure is proportional to the amount of rain water. As a result of data analyses for inclinometers and load cells, it seems that slope is stablized be cause ground deformation is rarely detected. The areas especially similar to the study site where landslide is induced by heavy rain fall, change of pore pressure is rapidly analyzed using automatic monitoring system. Therefore, it is considered that automatic monitoring system is very effect for slope stability analysis on important cut-slopes.

The design of an ejector type microbubble generator for aeration tanks

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.307-311
    • /
    • 2019
  • The ejector type microbubble generator, which is the method to supply air to water by using cavitation in the nozzle, does not require any air supplier so it is an effective and economical. Also, the distribution of the size of bubbles is diverse. Especially, the size of bubbles is smaller than the bubbles from a conventional air diffuser and bigger than the bubbles from a pressurized dissolution type microbubble generator so it could be applied to the aeration tank for wastewater treatment. However, the performance of the ejector type microbubble generator was affected by hydraulic pressure and MLSS(Mixed Liquor Suspended Solid) concentration so many factors should be considered to apply the generator to aeration tank. Therefore, this study was performed to verify effects of hydraulic pressure and MLSS concentration on oxygen transfer of the ejector type microbubble generator. In the tests, the quantity of sucked air in the nozzle, dissolved oxygen(DO) concentration, oxygen uptake rate(OUR), oxygen transfer coefficient were measured and calculated by using experimental results. In case of the MLSS, the experiments were performed in the condition of MLSS concentration of 0, 2,000, 4,000, 8,000 mg/L. The hydraulic pressure was considered up to $2.0mH_2O$. In the results of experiments, oxygen transfer coefficient was decreased with the increase of MLSS concentration and hydraulic pressure due to the increased viscosity and density of wastewater and decreased air flow rate. Also, by using statistical analysis, when the ejector type microbubble generator was used to supply air to wasterwater, the model equation of DO concentration was suggested to predict DO concentration in wastewater.

A Study on Noise Exposure Dose and Blood Pressure in an Automobile (모 자동차 공장의 소음폭로와 혈압에 관한 연구)

  • 김성천
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.2
    • /
    • pp.48-53
    • /
    • 1991
  • This study was carried out to investigate age, noise intensity, work period, hearing loss at frequencies, hypertension and to examine correlation of the total quantity of noise exposure(Dose) and blood pressure (Response) in the auto industry during May 1987-December 1987. To perform this study 65 workers were tested. Results of this study were as follows: 1. In frequency analysis, the CS-dip phenomenon occurred around 4000 Hz. 2. Between under of ten years group and over of ten years group, average hearing loss value was statitically significant (P < 0.05). 3. The prevalence of hypertension of 65 workers was 7.84% . 4. At 90dB(A) over and 10 years under and workers in the 20's group, the total quantity of noise exposure (Dose) and systolic blood pressure (Response) were statistically significant (P < 0.05). 5. At under 10 years of work period group, the total quantity of noise exposure(Dose) and diastolic blood pressure (Response) were statistically significant(r =0.234, P < 0.1).

  • PDF

Cyclic Threshold Shearing Strains of Sands Based on Pore Water Pressure Buildup and Variations of Deformation Characteristics (간극수압증가와 동적변형특성 변화에 근거한 사질토 지반의 반복한계전단변형률)

  • Kim, Dong-Soo;Choo, Yun-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.274-281
    • /
    • 2004
  • In this paper, the existing Stokoe type torsional shear equipment is modified to saturate the specimen and measure excess pore water pressure during undrained testing. Two types of sands, Geumgang and Toyoura sands, were collected and TS tests were performed at various densities drainage conditions, and confining pressures. The cyclic threshold shearing strains were estimated based on the variations of shear modulus, material damping ratio and pore pressures with loading cycles. The effects of relative density, confining pressure, and drainage condition on the cyclic threshold shearing strains were investigated.

  • PDF

Application of the Determination Method of Monitoring Location in Real Water Distribution System (실제 상수관망에 대한 모니터링 지점선정방법의 적용)

  • Park, Yong-Gyun;Jung, Sung-Gyun;Kwon, Hyuk-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.6
    • /
    • pp.617-623
    • /
    • 2015
  • In this study, determination methods of monitoring location in water distribution system were suggested and applied to real test bed. Small block of Gwangtan water distribution system is consisted of 582 pipes, 564 junctions, 1 reservoir, and 1 pump station. Small block of Ho Chi Minh water distribution system is consisted of 162 pipes, 148 junctions, and 1 reservoir. Two small block water distribution systems were analyzed by pressure contribution analysis method to determine the optimum monitoring locations. The pressure change was estimated at each junctions by the additional demand at a junction. From the results, the optimum monitoring location can be determined by rank of pressure contribution index at each junctions due to demand change at a junction.

A Review on Fit Test for Respirators and the Regulations (호흡기보호구의 Fit Test 방법과 규정에 관한 고찰)

  • Han, Don-Hee;Willeke, Klaus;Colton, Craig E.
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.38-54
    • /
    • 1996
  • Respirator fit testing is required before entering specific work environmentals to ensure that the respirator worn satisfies a minimum of fit and that the user knows when the respirator fits properly. The fit of a respirator can be determined by qualitative (QLFT) or quantitative fit test (QNFT). The QNFT, having been universally accepted more than the QLFT, provide an objective and numerical basis by measuring a fit factor (FF). Until a few years age, only one QNFT technigue was available and accepted by U.S. Occupational Safety and Health Administration (OSHA) regulations. In the 1980's and 1990's, several new and fundamentally different QNFT methods were developed. Two of the newer methods are commercially availale and are accepted by OSHA as suitable alternatives. In this articles, the principle of operation of each ONFT technique is explained and each technique's major advantages and disadvantages are pointed out. Emphasis is given to negative-pressure air-purifying respirators, as they are in most frequent use today. The requirements and recommendations for fit testing positive-pressure respirators are discussed as well. Finally, the presently available QNFT standards and regulations are summarized to assist the user in making fit testing decisions.

  • PDF

The Distribution of Genetic Polymorphism in the ACE2 Gene in Korean Essential Hypertensives (한국인 본태성 고혈압 환자군에서 ACE2유전자에 존재하는 A1075G다형성의 분포에 관한 연구)

  • Jang Min Hee;Kang Byung Yong;Lee Jae Koo;Lee Kang Oh
    • Environmental Analysis Health and Toxicology
    • /
    • v.20 no.4 s.51
    • /
    • pp.303-309
    • /
    • 2005
  • Essential hypertension has been considered as multifactorial disease resulted from the interaction of both environmental and genetic factors. The renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure homeostasis. Recently, a homologue of angiotensin I converting enzyme, ACE2 has been focused on as a candidate gene of essential hypertension in the experiments using animal model and human being. In this study, we carried out an association study in order to clarify the relationship between the A 1075G polymorphism in the ACE2 gene and essential hypertension in Korean subjects. Because this polymorphism is located on human chromosome X, the statistical analysis for each gender was performed separately. There were no significant differences in allele distribution of the A 1075G polymorphism in the ACE2 gene between normotensives and hypertensives in the both gender groups, respectively. However, this polymorphism was significantly associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) values in only female groups (P< 0.05). Thus, these results may suggest the probable role of ACE2 gene in the inter-individual susceptibility of female group to blood pressure variability.

The ROP mechanism study in hard formation drilling using local impact method

  • Liu, Weiji;Zhu, Xiaohua;Zhou, Yunlai;Mei, Liu;Meng, Xiannan;Jiang, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.95-101
    • /
    • 2018
  • The low rate of penetration and short lifetime of drilling bit served as the most common problems encountered in hard formation drilling, thus leading to severe restriction of drilling efficiency in oil and gas reservoir. This study developed a new local impact drilling method to enhance hard formation drilling efficiency. The limitation length formulas of radial/lateral cracks under static indentation and dynamic impact are derived based on the experimental research of Marshall D.B considering the mud column pressure and confining pressure. The local impact rock breaking simulation model is conducted to investigate its ROP raising effect. The results demonstrate that the length of radial/lateral cracks will increase as the decrease of mud pressure and confining pressure, and the local impact can result in a damage zone round the impact crater which helps the rock cutting, thus leading to the ROP increase. The numerical results also demonstrate the advantages of local impact method for raising ROP and the vibration reduction of bit in hard formation drilling. This study has shown that the local impact method can help raising the ROP and vibration reduction of bit, and it may be applied in drilling engineering.

Reynolds number effects on twin box girder long span bridge aerodynamics

  • Kargarmoakhar, Ramtin;Chowdhury, Arindam G.;Irwin, Peter A.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.327-347
    • /
    • 2015
  • This paper investigates the effects of Reynolds number (Re) on the aerodynamic characteristics of a twin-deck bridge. A 1:36 scale sectional model of a twin girder bridge was tested using the Wall of Wind (WOW) open jet wind tunnel facility at Florida International University (FIU). Static tests were performed on the model, instrumented with pressure taps and load cells, at high wind speeds with Re ranging from $1.3{\times}10^6$ to $6.1{\times}10^6$ based on the section width. Results show that the section was almost insensitive to Re when pitched to negative angles of attack. However, mean and fluctuating pressure distributions changed noticeably for zero and positive wind angles of attack while testing at different Re regimes. The pressure results suggested that with the Re increase, a larger separation bubble formed on the bottom surface of the upstream girder accompanied with a narrower wake region. As a result, drag coefficient decreased mildly and negative lift coefficient increased. Flow modification due to the Re increase also helped in distributing forces more equally between the two girders. The bare deck section was found to be prone to vortex shedding with limited dependence on the Re. Based on the observations, vortex mitigation devices attached to the bottom surface were effective in inhibiting vortex shedding, particularly at lower Re regime.