• Title/Summary/Keyword: Environmental gradient

Search Result 781, Processing Time 0.034 seconds

OPTICAL-NEAR INFRARED COLOR GRADIENTS OF ELLIPTICAL GALAXIES AND THEIR ENVIRONMENTAL DEPENDENCE

  • KO JONGWAN;IM MYUNGSHIN
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.149-151
    • /
    • 2005
  • We have studied the environmental effect on optical-NIR color gradients of 273 nearby elliptical galaxies. Color gradient is a good tool to study the evolutionary history of elliptical galaxies, since the steepness of the color gradient reflects merging history of early types. When an elliptical galaxy goes through many merging events, the color gradient can be get less steep or reversed due to mixing of stars. One simple way to measure color gradient is to compare half-light radii in different bands. We have compared the optical and near infrared half-light radii of 273 early-type galaxies from Pahre (1999). Not surprisingly, we find that $r_e(V)s$ (half-light radii measured in V-band) are in general larger than $r_e(K)s$ (half-light radii measured in K-band). However, when divided into different environments, we find that elliptical galaxies in the denser environment have gentler color gradients than those in the less dense environment. Our finding suggests that elliptical galaxies in the dense environment have undergone many merging events and the mixing of stars through the merging have created the gentle color gradients.

The Growth Response of Quercus dentata Sapling to the Environmental Gradients Treatment (환경구배처리에 따른 떡갈나무의 생육 반응)

  • Lee, Sang-Kyoung;You, Young-Han;Yi, Hoon-Bok
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.597-601
    • /
    • 2010
  • Quercus dentata (Thunb. ex Murray) is a major tree found in dry habitats such as limestone areas of Korea. In order to characterize the ecological traits of Q. dentata, we treated Q. dentata saplings under four gradient levels of major environment factors such as light, soil moisture and nutrients for 5 months in a glass house. We then measured and analyzed growth differences among them. Regarding light, aboveground, belowground and plant biomass were highest at a high gradient and lowest at a low one. The root/shoot ratio was highest at the highest light gradient. Regarding moisture, no measured items were significantly affected by the moisture gradient. Regarding nutrients, aboveground, belowground and plant biomass were the highest at a slightly high gradient and the lowest at a gradient lower or higher than this. The root/shoot ratio was not significantly affected by the nutrient gradient. From these results, it was shown that the growth of Q. dentata was more affected by light and nutrients in the environment than moisture.

Effect of Sea Surface Temperature Gradient Induced by the Previous Typhoon's Cold Wake on the Track of the Following Typhoon: Bolaven (1215) and Tembin (1214) (선행 태풍의 해수 냉각에 의한 해수면 온도 경도가 후행 태풍의 진로에 미치는 영향: 볼라벤(1215)과 덴빈(1214))

  • Moon, Mincheol;Choi, Yumi;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.635-647
    • /
    • 2016
  • The effects of sea surface temperature (SST) gradient induced by the previous typhoon on the following typhoon motion over East Asia have been investigated using Weather Research and Forecasting (WRF) model for the previous Typhoon Bolaven (1215) and following Typhoon Tembin (1214). It was observed that Typhoon Bolaven remarkably reduced SST by about $7^{\circ}C$ at Yellow Sea buoy (YSbuoy). Using the WRF experiments for the imposed cold wake over West of Tembin (WT) and over East of Tembin (ET), this study demonstrates that the effects of eastward SST gradient including cold wake over WT is much significant rather than that over ET in relation to unexpected Tembin's eastward deflection. This difference between two experiments is attributed to the fact that cold wake over WT increases the magnitude of SST gradient under the eastward SST gradient around East Asia and the resultant asymmetric flow deflects Typhoon Tembin eastward, which is mainly due to the different atmospheric response to the SST forcing between ET and WT. Therefore, it implies that the enhanced eastward SST gradient over East Asia results in larger typhoon deflection toward the region of warmer SST according to the location of the cold wake effect. This result can contribute to the improvement of track prediction for typhoons influencing the Korean Peninsula

Wind characteristics observed in the vicinity of tropical cyclones: An investigation of the gradient balance and super-gradient flow

  • Tse, K.T.;Li, S.W.;Lin, C.Q.;Chan, P.W.
    • Wind and Structures
    • /
    • v.19 no.3
    • /
    • pp.249-270
    • /
    • 2014
  • Through comparing the mean wind profiles observed overland during the passages of four typhoons, and the gradient wind speeds calculated based on the sea level pressure data provided by a numerical model, the present paper discusses, (a) whether the gradient balance is a valid assumption to estimate the wind speed in the height range of 1250 m ~ 1750 m, which is defined as the upper-level mean wind speed, in a tropical cyclone over land, and (b) if the super-gradient feature is systematically observed below the height of 1500 m in the tropical cyclone wind field over land. It has been found that, (i) the gradient balance is a valid assumption to estimate the mean upper-level wind speed in tropical cyclones in the radial range from the radius to the maximum wind (RMW) to three times the RMW, (ii) the super-gradient flow dominates the wind field in the tropical cyclone boundary layer inside the RMW and is frequently observed in the radial range from the RMW to twice the RMW, (iii) the gradient wind speed calculated based on the post-landfall sea level pressure data underestimates the overall wind strength at an island site inside the RMW, and (iv) the unsynchronized decay of the pressure and wind fields in the tropical cyclone might be the reason for the underestimation.

Variation Characteristics of Hydraulic Gradient and Major Flow Direction in the Landfill Soils (매립지 토양층의 수리경사와 주 흐름 방향의 변동특성)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;Kim, Sung-Soo;Kwon, Byung-Hyuk
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.315-323
    • /
    • 2009
  • Hydraulic gradient of the landfill soils is estimated by Devlin (2003) method, and its variation characteristics from rainfall and permeability of the aquifer material are analyzed. The study site of 18 m $\times$ 12 m is located in front of the Environment Research Center at the Pukyong National University, and core logging, slug/bail test and groundwater monitoring was performed. The sluglbail tests were performed in 9 wells (except BH9 well), and drawdown data with elapsed time for bail tests were analyzed using Bouwer-Rice and Hvorslev methods. The average hydraulic conductivity estimated in each of the test wells was ranged $1.991{\times}10^{-7}{\sim}4.714{\times}10^{-6}m/sec$, and the average hydraulic conductivity in the study site was estimated $2.376{\times}10^{-6}m/sec$ for arithmetic average, $1.655{\times}10^{-6}m/sec$ for geometric average and $9.366{\times}10^{-7}m/sec$ for harmonic average. The permeability of landfill soils was higher at the east side of the study site than at the west side. Groundwater level in 10 wells was monitored 44 times from October 2 to November 7, 2007. The groundwater level was ranged 1.187$\sim$1.610 m, and the average groundwater level range in each of the well showed 1.256$\sim$1.407 m. The groundwater level was higher at the east side than at the west side of the study site, and this distribution is identify to it of hydraulic conductivity. The hydraulie gradient and the major flow direction for 10 wells were estimated 0.0072$\sim$0.0093 and $81.7618{\sim}88.0836^{\circ}$, respectively. Also, the hydraulic gradient and the major flow direction for 9 wells were estimated 0.0102$\sim$0.0124 and $84.6822{\sim}89.1174^{\circ}$, respectively. The hydraulic gradient of the study site increased from rainfall (83.5 mm) on October 7, causing by that the groundwater level of the site with high permeability was higher. The hydraulic gradient estimated on and after October 16 was stable, due to almost no rainfall. Thus, it was confirmed that the variation of the hydraulic gradient in the landfill soils was controlled by the rainfall.

Soil Factors Affecting the Plant Communities of Wetland on Southwestern coast of Korea (한국 서남해안 습지의 식물 군집에 미치는 토양요인)

  • 임병선;이점숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.321-328
    • /
    • 1998
  • To describe the major environmental factors operating in coastal wetland and to characterize the distribution of the plant species over the wetland in relation to the major environmental gradients, 12 soil physical and chemical properties were determined. The gradient of water and osmotic potential of soil, electrical conductivity, sodium and chloride content and soil texture alsong the three habitat types of salt marshes, salt swamp and sand dune were occurred. The 24 coastal plant communities from principal component analysis (PCA) on the 12 variables were at designated as a gradient for soil texture and water potential related with salinity by Axis I and as a gradient for soil moisture and total nitrogen gradient by Axis II On Axis I were divided into 3 groups (1) 9 salt marsh communities including Salicornia herbacea communities (2) 5 salt swamp communities including Scirpus fluviatilis communities and (3) 10 sand dune communities including Jmperata cylindrica communities on Axis II were divided into 2 groups (1) salt marsh and sand dune communities, and (2) 3 salt swamp communities. The results could account for the zonation of plant communities on coastal wetland observed alsong envionmental gradients.

  • PDF

Environmental Gradient Analysis of Forest Vegetation of Mt. Naejang, Southwestern Korea (내장산 삼림식생의 환경경도분석)

  • 김정언
    • Journal of Plant Biology
    • /
    • v.31 no.1
    • /
    • pp.33-39
    • /
    • 1988
  • The environmental gradient analyses were aplied for the ordination of forest vegetation in Mt. Naejang national park area in Korea. The species population sequence along soil moisture gradient, mesic to xeric, was shown in following order: Zelkova serrata, Celtis sinensis, Lindera erythrocarpa, Cornus controversa, Acer mono, Carpinus tschonoskii, Quercus aliena, Daphniphyllum macropodum, Torreya mucifera, Carpinus laxiflora, Quercus serrata, Quercus variabilis, Quercus mongolica and Pinus densiflora in tree species and Acer pseudo-siebolidianum var. koreanum, Lindera obtusiloba, Styrax obassia, Styrax japonica, Acer pseudo-sieboldianum and Rhododendron schlippenbachii in shrub species. Ten ecological groups of tree were grouped and coincided with the vegetational units in phytosociological classification by Z-M method, associations. Four vegetation types, cove forest with Zelkova serrata and Lindera erythrocarpa, hornbeam forest with Carpinum laxiflora and Carpinum tschonoskii, oak forest with Quercus variabilis and Quercus mongolica and pine forest with Pinus densiflora as the dominant species were separated in mosaic chart by the two dimensional analyses of elevation and soil moisture gradient.

  • PDF

Effects of hydrodynamics and coagulant doses on particle aggregation during a rapid mixing

  • Park, Sang-Min;Heo, Tae-Young;Park, Jun-Gyu;Jun, Hang-Bae
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.365-372
    • /
    • 2016
  • The effects of hydrodynamics and alum dose on particle growth were investigated by monitoring particle counts in a rapid mixing process. Experiments were performed to measure the particle growth and breakup under various conditions. The rapid mixing scheme consisted of the following operating parameters: Velocity gradient (G) ($200-300s^{-1}$), alum dose (10-50 mg/L) and mixing time (30-180 s). The Poisson regression model was applied to assess the effects of the doses and velocity gradient with mixing time. The mechanism for the growth and breakup of particles was elucidated. An increase in alum dose was found to accelerate the particle count reduction. The particle count at a G value of $200s^{-1}$ decreased more rapidly than those at $300s^{-1}$. The growth and breakup of larger particles were more clearly observed at higher alum doses. Variations of particles due to aggregation and breakup of micro-flocs in rapid mixing step were interactively affected by G, mixing time and alum dose. Micro-flocculation played an important role in a rapid mixing process.

Vertical and longitudinal variations in plant communities of drawdown zone of a monsoonal riverine reservoir in South Korea

  • Cho, Hyunsuk;Marrs, Rob H.;Alday, Josu G.;Cho, Kang-Hyun
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.271-281
    • /
    • 2019
  • Background: The plant communities within reservoir drawdown zones are ecologically important as they provide a range of ecosystem services such as stabilizing the shoreline, improving water quality, enhancing biodiversity, and mitigating climate change. The aim of the study was therefore to identify the major environmental factors affecting these plant communities within the drawdown zone of the Soyangho Reservoir in South Korea, which experiences a monsoonal climate, and thereafter to (1) elucidate the plant species responses and (2) compare the soil seedbank composition along main environmental gradients. Results: Two main environmental gradients affecting the plant community structure were identified within the drawdown zone; these were a vertical and longitudinal gradient. On the vertical dimension, a hydrological gradient of flood/exposure, the annual-dominated plant community near the water edge changed to a perennial-dominated community at the highest elevation. On the longitudinal dimension from the dam to the upstream, plant species composition changed from an upland forest-edge community to a lowland riverine community, and this was correlated with slope degree, soil particle size, and soil moisture content. Simultaneously, the composition of the soil seedbank was separated along the vertical gradient of the drawdown zone, with mainly annuals near the water edge and some perennials at higher elevations. The species composition similarity between the seedbank and extant vegetation was greater in the annual communities at low elevation than in the perennial communities at higher elevation. Conclusions: The structures of plant community and soil seedbank in the drawdown zone of a monsoonal riverine reservoir were changed first along the vertical and secondly along the longitudinal gradients. The soil seedbank could play an important role on the vegetation regeneration after the disturbances of flood/exposure in the drawdown zone. These results indicate that it is important to understand the vertical and longitudinal environmental gradients affecting shoreline plant community structure and the role of soil seedbanks on the rapid vegetation regeneration for conserving and restoring the drawdown zone of a monsoonal reservoir.

The use of Gradient Analysis in Spatial Understanding of Urbanization (단계적 변화 분석(gradient analysis)을 적용한 도시화의 공간적 평가)

  • Lee, Dong-Kun;Choe, Hye-Yeong
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.6
    • /
    • pp.357-366
    • /
    • 2008
  • It is certain that urbanization has transformed the ecological consequences severely, but urban ecosystem is not fully understood yet. Urban growth is not like a static form and it spreads spatially and temporally. Therefore in studying urban ecosystem, it is important to relate the spatial pattern of urbanization to ecological processes. Using gradient analysis, we attempted to quantify the urbanization's spatial impacts in Daejeon-city and Cheonan-city, Chungcheong-province, Korea. Because of Multifunctional Administrative City Planning (MACP), a lot of development projects are planned in Chungcheong-province, Korea. It's important to study about original cities' patterns and impacts. These results can be adopted to future city planning. So several measures such as fragmentation, vegetation index, surface temperature, population density, and income rate were computed along a 75km long and 3km wide transect. The results showed that Daejeon-city has a wider urban center, lower vegetation indexes, and higher surface temperature than Cheonan-city. Therefore in the perspective of urban environments and sustainable urbanism, it seems that Cheonan-city is better than Daejeon-city. The changes along the transect have important ecological implications, and quantifying the urbanization gradient is an important step in understanding urban ecology.