• Title/Summary/Keyword: Environmental friendly livestock complex

Search Result 4, Processing Time 0.018 seconds

Feasibility Study on the Development of Environmental Friendly Livestock Complex in the Reclaimed Tideland (간척지 자연순환형 친환경축산단지 도입 타당성 연구)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.430-433
    • /
    • 2009
  • The development of large-scale environmental friendly livestock complex in the reclaimed tideland is one of different alternatives to increase the competitiveness of internal livestock industry against an international opening markets as DDA and FTA in agricultural field. Recently, it is possible to introduce an environmental friendly livestock complex in the reclaimed tideland by an amendment of the acts for agricultural land. However more studies that are on the basis of nitrogen and phosphorus mass balance need to preserve the agricultural environments as the quality of agricultural water and soil in rural area. In this study, the reference for feasibility study is Whaong reclaimed tideland which located at Whaseong city, Gyeonggi Province, and a basic concept of environmental friendly livestock complex is the production of forage crops with the supply of liquid fertilizer and the production of bioenergy such as biogas by the recycling of pig slurry as a resource. The mass balance of nitrogen based on between forage crops such as maize, barley and liquid fertilizer supplied at the reclaimed tideland, and also it was estimated an economical efficiency as anaerobic digestion plant for treating pig slurry of $100m^3/day$ introduce in an environmental friendly livestock complex.

  • PDF

The role of rumen microbiota in enteric methane mitigation for sustainable ruminant production

  • Takumi Shinkai;Shuhei Takizawa;Miho Fujimori;Makoto Mitsumori
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.360-369
    • /
    • 2024
  • Ruminal methane production functions as the main sink for metabolic hydrogen generated through rumen fermentation and is recognized as a considerable source of greenhouse gas emissions. Methane production is a complex trait affected by dry matter intake, feed composition, rumen microbiota and their fermentation, lactation stage, host genetics, and environmental factors. Various mitigation approaches have been proposed. Because individual ruminants exhibit different methane conversion efficiencies, the microbial characteristics of low-methane-emitting animals can be essential for successful rumen manipulation and environment-friendly methane mitigation. Several bacterial species, including Sharpea, uncharacterized Succinivibrionaceae, and certain Prevotella phylotypes have been listed as key players in low-methane-emitting sheep and cows. The functional characteristics of the unclassified bacteria remain unclear, as they are yet to be cultured. Here, we review ruminal methane production and mitigation strategies, focusing on rumen fermentation and the functional role of rumen microbiota, and describe the phylogenetic and physiological characteristics of a novel Prevotella species recently isolated from low methane-emitting and high propionate-producing cows. This review may help to provide a better understanding of the ruminal digestion process and rumen function to identify holistic and environmentally friendly methane mitigation approaches for sustainable ruminant production.

Establishments of the System of Regional Resource Circulation based on Environmental-Friendly Agriculture at Asan Area (아산시 친환경 지역농업의 자원순환시스템 구축방향)

  • Yoon, Jong-Yeol;Kim, Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.13 no.1
    • /
    • pp.1-22
    • /
    • 2005
  • This study was focused on the system of regional resource circulation(RRC) of Asan-Si as a case region. So 301 farmers(members of producer organization) who are managing environmental-friendly agriculture (EFA) are surveyed. The RRC system is focused on establishing the system of regional complex farming connected with the seedling fanning and the livestock. The main results surveyed are as follows : First, total cultivated acreage is 574ha. Second, the total quantity of by-products of rices, beans, wheats is 983M/T. Third, the total quantity of nutrient requirement for seeding fanning is 85,335.6kg This research shows how to develop the RRC system for EFA. The development model and strategies are as follows : The first model for the system of regional resource circulation can be called the scenario of the best output for the system of environmentally friendly resource circulation. It is considered to estimate the appropriate number of heads of Korean cattle and hen which can be bred simultaneously. And the second model can be called the scenario of the regional allotment for the appropriate number of heads of those. It is considered to estimate the appropriate number of heads of those which can be alloted by the individual farm or area.

  • PDF

Economic and Environmental Sustainability Assessment of Livestock Manure Gasification for Fuel Gas Production (축분 가스화를 통한 연료가스 생산 공정의 경제적, 환경적 지속가능성 평가)

  • Ji Hong Moon;Kyung Hwan Ryu
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.291-298
    • /
    • 2023
  • This research evaluates the sustainability of gasifying livestock manure to produce fuel gas from an economic and carbon emission perspective. The entire process, including gasification, fuel gas purification, and pipeline installation to transport the produced fuel gas to the demanding industrial complex, is analyzed for realistic feasibility. The study is conducted using an ASPEN PLUS simulation with experimental data. The results of the economic and CO2 life cycle assessments confirm that the fuel gas produced from livestock manure is competitive with natural gas despite having a lower calorific value. When used as a fuel with a high hydrogen content, the fuel gas emits less CO2 per calorific value, making it more environmentally friendly. A scenario analysis is also performed to determine the expected economics, with price competitiveness being influenced by several factors. Although a significant decrease in natural gas prices could reduce the price competitiveness of the proposed process, it can still be supported by government policies. The cash flow analysis also confirms the economic viability of the process.