• Title/Summary/Keyword: Environmental durability

Search Result 839, Processing Time 0.029 seconds

Experimental Study on Correlation Analysis of Air-void, Air-spacing factor and Long-term Durability for Roller-compacted Concrete pavement (롤러 전압 콘크리트 포장의 공기량 및 기포간격계수와 장기 내구성의 상관관계 분석을 위한 실험적 연구)

  • Lee, Jun Hee;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.63-72
    • /
    • 2016
  • PURPOSES : The use of roller-compacted concrete pavement (RCCP) is an environmentally friendly method of construction that utilizes the aggregate interlock effect by means of a hydration reaction and roller compacting, demonstrating a superb structural performance with a relatively small unit water content and unit cement content. However, even if an excellent structural performance was secured through a previous study, the verification research on the environmental load and long-term durability was conducted under unsatisfactory conditions. In order to secure longterm durability, the construction of an appropriate internal air-void structure is required. In this study, a method of improving the long-term durability of RCCP will be suggested by analyzing the internal air-void structure and relevant durability of roller-compacted concrete. METHODS : The method of improving the long-term durability involves measurements of the air content, air voids, and air-spacing factor in RCCP that experiences a change in terms of the kind of air-entraining agent and chemical admixture proportions. This test should be conducted on the basis of test criteria such as ASTM C 457, 672, and KS F 2456. RESULTS : Freezing, thawing, and scaling resistance tests of roller compacted concrete without a chemical admixture showed that it was weak. However, as a result of conducting air entraining (AE) with an AE agent, a large amount of air was distributed with a range of 2~3%, and an air void spacing factor ranging from 200 to $300{\mu}m$ (close to $250{\mu}m$) coming from PCA was secured. Accordingly, the freezing and thawing resistance was improved, with a relative dynamic elastic modulus of more than 80%, and the scaling resistance was improved under the appropriate AE agent content rate. CONCLUSIONS : The long-term durability of RCCP has a direct relationship with the air-void spacing factor, and it can be secured only by ensuring the air void spacing factor through air entraining with the inclusion of an AE agent.

A Study on Remodeling Period by Cost Analysis of Finished and Equipped Materials in Apartment Building (공동주택 내/외장재 및 설비재의 비용분석을 통한 리모델링시기 검토를 위한 연구)

  • Oh Jin-Soo;Kim Ki-Hyung;Lee Myung-Sik
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.5 s.52
    • /
    • pp.218-225
    • /
    • 2005
  • In this apartment market, many apartments are being reconstructed within even less than 20 years from their first construction. This entails many problems in environmental and economical facets, for which many researches are under way in several institutions and universities. International cases show that the international trend goes for remodeling of maintenance, management, and repairing rather than new building. The purpose of this study is to investigate the factors of cost evaluation for establishing the time period of apartment based on durability of material and equipment while considering the economic feasibility of apartment, when remodeling as a concept of sustainability regarding building is being vitalized. This study investigates the proper period of remodeling in consideration of weight accruing to the LC(Life Cycle) and cost based on the standardized durability. The weight of cost, period establishment analysis, and LC according durability varies the data values of remodeling periods. The physical durability and cost from this data enable the investigation into not only the repair period of individual materials of the apartment but also remodeling period.

A Durability Evaluation of Remanufactured Industrial Hydraulic Pump and Solenoid Valve (산업용 유압펌프 및 솔레노이드 밸브 재제조품의 내구성 평가)

  • Lee, Kyu-Chang;Park, Sang-Jin;Son, Woo-Hyun;Jeon, Chang-Su;Mok, Hak-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.537-546
    • /
    • 2021
  • Remanufacturing is one of the most important resource recycling technology in response to resource depletion and environmental pollution. Domestic remanufacturing industry don't invigorate compared to other advanced countries because of low price and reliability of remanufactured product. In this study, remanufactured hydraulic pump and solenoid valve were evaluated durability by accelerated life test. In order that standard remanufacturing process was developed by core analysis and failure mode and effect analysis. And cores were remanufactured by standard remanufacturing process. For accelerated life test, the evaluation item and criteria were deduced by results of FMEA, reliability standards and enterprise interior criteria. To evaluate durability of remanufactured product, the remanufactured hydraulic pump and solenoid valve were evaluated performance after accelerated life test and the results were satisfied with criteria. This study showed that remanufactured products have a similar level of durability to new products by definition of remanufacturing.

Durability Evaluation Study of Re-manufactured Photovoltaic Modules (재 제조 태양광모듈의 내구성능 평가 연구)

  • Kyung Soo Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Photovoltaic (PV) power generation is the world's best and largest renewable energy that generates electricity with infinite sunlight. Solar cell modules are a component of photovoltaic power generation and must have a long-term durability of at least 25 years. The development of processes and equipment that can be recovered through the recycling of metals and valuable metals when the solar module's lifespan is over has been completed to the level of commercialization, but few processes have been developed that require repair due to initial defects. This is mainly due to the economic problems caused by remaking. However, if manufacturing processes such as repairing solar cell modules that have been proven to be early defects are established and the technical review of long-term reliability and durability reaches a certain level, it is considered that it will be a recommended process technology for environmental economics. In this paper, assuming that a defective solar cell module occurs artificially, a manufacturing process for replacement of solar cells was developed, and a technical verification of the manufacturing technology was conducted through long-term durability evaluation in accordance with KS C 8561. Through this, it was determined that remanufacturing technology for solar cell replacement of solar cell modules that occurred in a short period of time after installation was possible, and the research results were announced through a journal to commercialize solar modules using manufacturing technology in the solar market in the future.

Durability Characteristics of Concrete Containing Lightly Burnt MgO Powder (저온 소성한 MgO 분말을 혼입한 콘크리트의 내구 특성)

  • Choi, Seul-Woo;Kim, Joo-Hyung;Lee, Kwang-Myong;Kwon, Yong-Gil;Jang, Bong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.609-615
    • /
    • 2011
  • MgO concrete containing lightly burnt MgO powder at $850{\sim}1,000^{\circ}C$ may have a long-term expansibility characteristic. Such expansibility of MgO concrete can compensate the shrinkage at later ages since the hydration of the MgO is very slow. However, the addition of MgO delays the initial hydration of cement and increases the setting time of cement. Also, the porosity and pore-size distribution of the MgO concrete are different from OPC concrete. Therefore, in order to use MgO in practice, both mechanical and durability properties of MgO concrete should be carefully examined. In this study, durability tests on carbonation, freezing-thawing, and diffusion of chloride were carried out after 56 days of underwater curing at $20^{\circ}C$ to compare durability characteristics of 5% MgO-mixed concrete with those of OPC concrete. The results showed that MgO concrete shows a greater durability than the concrete with no MgO, because the micro structure in the MgO concrete is much denser due to its expansibility characteristic.

The Durability of Environmentally Friendly Inorganic Grouting Material(NDS) (친환경적인 무기질계 주입재(NDS)의 내구성에 관한 연구)

  • Lee, Hyejin;Lee, Jonghwi;Jung, kyoungsik;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.49-56
    • /
    • 2011
  • Recently, the ground injection method using water glass as one of the components of the main resources and the products of the construction has some basic problems for permanent reinforcement of foundation and stopping leakage of water because it has some serious problems such as durability reduction, compression strength reduction and eluviation. This study was to evaluate the environmental impact and durability of the developed friendliness of Natural and Durable Stabilizer(NDS) of inorganic injection and Space Grouting Roket(SGR) with typical water glass type material. Two materials, NDS and SGR, were compared with each other by unconfined compressive strength test, fish poison test, durability test and triaxial permeability test. The results of the durability test indicated that the 28-day strength of the NDS was 1.5 times higher than that of the SGR. The fish poison test proved that the survival rate in the SGR and NDS is 50~70%, and 100%, respectively. Therefore, the NDS has higher survival rate than that of the existing SGR. The NDS will be considered by an environmentally friendly product and moreover it has a few problems for soil and groundwater pollution.

Durability and mechanical performance in activated hwangtoh-based composite for NOx reduction

  • Kim, Hyeok-Jung;Park, Jang-Hyun;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.307-314
    • /
    • 2021
  • Activated hwangtoh (ACT) is a natural resource abundant in South Korea, approximately 15.0% of soil. It is an efficient mineral admixture that has activated pozzolanic properties through high-temperature heating and rapid cooling. The purpose of this study is to improve a curb mixture that can reduce NOx outside and investigate durability performance. To this end, mortar curb specimens were manufactured by replacing OPC with ACT. The ACT substitution ratios of 0.0, 10.0, and 25.0% were considered, and mechanical and durability tests on the curb specimens were conducted at 28 and 91 days of age. Steam curing was carried out for three days for the production of curbs, which was very effective to strength development at early ages. The reduction in strength at early ages could be compensated through this process, and no significant performance degradation was evaluated in the tests on chloride attack, carbonation, and freezing and thawing. The mortar curb with an ACT of 10.0~25.0% replacement ratio exhibited clear NOx reduction through photocatalytic (TiO2) treatment. This is due to the increase in physical absorption through surface absorption and the photocatalyst-containing TiO2 coating. In this study, the reasonable range of the ACT replacement ratio for NOx reduction was quantitatively evaluated through a comprehensive analysis of each test.

Enhancing ductility in carbon fiber reinforced polymer concrete sections: A multi-scale investigation

  • Moab Maidi;Gili Lifshitz Sherzer;Erez Gal
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.385-398
    • /
    • 2024
  • As concrete dominates the construction industry, alternatives to traditionally used steel reinforcement are being sought. This study explored the suitability of carbon fiber-reinforced polymer (CFRP) as a substitute within rigid frames, focusing on its impact on section ductility and overall structural durability against seismic events. However, current design guidelines address quasi-static loads, leaving a gap for dynamic or extreme circumstances. Our approach included multiscale simulations, parametric study, and energy dissipation analyses, drawing upon a unique adaptation of modified compression field theory. In our efforts to optimize macro and microparameters to improve yield strength, manage brittleness, and govern failure modes, we also recognized the potential of CFRP's high corrosion resistance. This characteristic of CFRP could significantly reduce the frequency of required repairs, thereby contributing to enhanced durability of the structures. The research reveals that CFRP's durability and seismic resistance are attributed to plastic joints within compressed fibers. Notably, CFRP can impart ductility to structural designs, effectively balancing its inherent brittleness, particularly when integrated with quasi-brittle materials. This research challenges the notion that designing bendable components with carbon fiber reinforcement is impractical. It shows that creating ductile bending components with CFRP in concrete is feasible despite the material's brittleness. This funding overturns conventional assumptions and opens new avenues for using CFRP in structural applications where ductility and resilience are crucial.

Durability Prediction for Concrete Structures Exposed to Chloride Attack Using a Bayesian Approach (베이지안 기법을 이용한 염해 콘크리트구조물의 내구성 예측)

  • Jung, Hyun-Jun;Zi, Goang-Seup;Kong, Jung-Sik;Kang, Jin-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.77-88
    • /
    • 2008
  • This paper provides a new approach for predicting the corrosion resistivity of reinforced concrete structures exposed to chloride attack. In this method, the prediction can be updated successively by a Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model. To simplify the procedure of the model, the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures which have been monitored.

Application of steel-concrete composite pile foundation system as energy storage medium

  • Agibayeva, Aidana;Lee, Deuckhang;Ju, Hyunjin;Zhang, Dichuan;Kim, Jong R.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.753-763
    • /
    • 2021
  • Feasibility studies of a reinforced concrete (RC) deep pile foundation system with the compressed air energy storage (CAES) technology were conducted in previous studies. However, those studies showed some technical limitations in its serviceability and durability performances. To overcome such drawbacks of the conventional RC energy pile system, various steel-concrete composite pile foundations are addressed in this study to be utilized as a dual functional system for an energy storage medium and load-resistant foundation. This study conducts finite element analyses to examine the applicability of various composite energy pile foundation systems considering the combined effects of structural loading, soil boundary forces, and internal air pressures induced by the thermos-dynamic cycle of compressed air. On this basis, it was clearly confirmed that the role of inner and outer tubes is essential in terms of reliable storage tank and better constructability of pile, respectively, and the steel tubes in the composite pile foundation can also ensure improved serviceability and durability performances compared to the conventional RC pile system.