• Title/Summary/Keyword: Environmental catalysis

Search Result 96, Processing Time 0.038 seconds

Computational Study on the Soot Blowing Method for Enhancing the Performance of the SCR System (SCR 시스템의 효율적인 운영을 위한 Soot Blowing 방법에 대한 해석적 연구)

  • Seo, MoonHyeok;Chang, HyukSang
    • Particle and aerosol research
    • /
    • v.8 no.3
    • /
    • pp.99-110
    • /
    • 2012
  • In the SCR (selective catalytic reduction) system which is used for controlling the NOx emission from the Diesel engines, the soot deposited on the catalysis causes degradation of the system performance. Numerical study was done to evaluate the performance of soot blower which is proposed as a method for removing the soot on the catalysis. The spray conditions and the effect of the compressed air from the AIG (air inlet gun) were analyzed numerically to evaluate the overall effective method of the soot blowing. The characteristics of the final velocity distribution and velocity waves across the inlet section of the catalysis were evaluated with respect to the geometries of the AIG outlets and pressure conditions. An experimental model was used to validate the results of the numerical calculation that is used for finding the effective removal blowing momentum transfer quantities of soot the inlet section of the catalysis, and it is proposed that the required minimum blowing momentum transfer quantities are over than 0.499 $kg/m{\bullet}t_{eff}$ in the current study.

Application of DBD Plasma Catalysis Hybrid Process to remove Organic Acids in Odors (악취물질인 유기산 제거를 위한 DBD 플라즈마 촉매 복합공정의 적용)

  • Hong, Eun-Gi;Suh, Jeong-Min;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1627-1634
    • /
    • 2014
  • Odor control technology include absorption, adsorption, incineration and biological treatments. But, most of processes have some problems such as secondary organic acids discharge at the final odor treatment facility. In order to solve the problems for effective treatment of organic acids in odor, it is necessary to develop a new type advanced odor control technology. Some of the technology are plasma only process and plasma hybrid process as key process of the advanced technology. In this study, odor removal performance was compared DBD(Dielectric Barrier Discharge)plasma process with PCHP(plasma catalysis hybrid process) by gaseous ammonia, formaldehyde and acetic acid. Plasma only process by acetic acid obtained higher treatment efficiency above 90%, and PCHP reached its efficiency up to 96%. Acetic acid is relatively easy pollutant to control its concentration other than sulfur and nitrogen odor compounds, because it has tendency to react with water quickly. To test of the performance of DBD plasma process by applied voltage, the tests were conducted to find the dependence of experimental conditions of the applied voltage at 13 kV and 15 kV separately. With an applied voltage at 15 kV, the treatment efficiency was achieved to more higher than 13 kV from 83% to 99% on ammonia, formaldehyde and acetic acid. It seems to the odor treatment efficiency depends on the applied voltage, temperature, humidity and chemical bonding of odors.

Electrochemical degradation of Orange G in K2SO4 and KCl medium

  • Hamous, Hanene;Khenifi, Aicha;Bouberka, Zohra;Derriche, Zoubir
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.571-578
    • /
    • 2020
  • In this work, a detailed study on the electrochemical degradation of an azo dye, Orange G is performed using a platinum electrode. Indeed, the influence of the dye concentration (50-150 mg/L), the pH of the medium and the density of the electric current is studied on the rate of discoloration, the rate of mineralization, the efficiency of the electric current and the energy consumption. The UV-visible spectra of OG plotted against the degradation time show the decrease of the intensity of the characteristic dye peaks. In an environment rich in chlorides, all peaks disappear after 15 min of degradation. However, the peaks at wavelengths of 200 and 290 nm appeared after one hour of treatment. In K2SO4, the eliminated percentages are respectively 46, 54 and 61% for wavelengths of 245, 330 and 480 nm. This suggests that the degradation mechanisms in K2SO4 and KCl environments are not the same. In the middle rich in chlorides, the eliminated percentage of OG did not seem to be affected by the concentrations increase. These results confirm the hypothesis that electrochemical oxidation process is very favorable for concentrated pollutants discharge.

Catalysis Reaction for the Formation of Hydrogen Cyanide from Metal Complex (금속착물로부터 HCN 생성에 대한 촉매반응연구)

  • 박흥재
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.439-443
    • /
    • 1994
  • In aqueous acid solution ${[Cr(CN)_6]}^{3-}$ aquates via a series of stepwise stereospecific reactions to give ${[Cr{(H_2O)}_6]}^{3+}$as the final product.Some of the intermediate cyanoaquo complexes in the sequence have been isolated.These complexes aquate by both acid independent and acid denpendent pathways, the latter involving protonation of the cyano ligands followed by aquation of the singly protonated species. The kinetic data for the aquation of {[CrCN{(H_2O)}_5]}^{2+}$ are consistent with the transition state structure ${[{(H_2O)}_4Cr(CN)-OH-Cr{(H_2O)}_5]}^{3+}$. Addition of $Cr^{2+}$ to solutions of cyanocobalt(III) complexes produces the metastable intermediate${[CrNC{(H_2O)}_5]}^{2+}$ This isomerizes to in a $Cr^{2+}$-catalyzed reaction which occurs by a ligand-bridged electron-change mechnism. From acid catalysis on these aquation reactions, it product HCN. Especially, $HSO_3$-ions do the role of catalyst in the formation of HCN from $CrCN^{3-}$

  • PDF

The Effect on the pH in ozonation of ammonia with Br catalysis (브롬촉매와 암모니아의 오존산화 반응시 pH의 영향에 관한 연구)

  • 박문숙;안재동;노봉오
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This study was conducted to supply basic informations on development of water treatment process for the ozonation of ammonia depend on pH variation with or without bromide catalysis. The results were as follows: The oxidation rate of ammonia increased depend on pH increase at ozone/bromide process. It was found that overall kinetics was zero order with respect to reaction time and reaction velocity constant of zero order increased depend on pH increase from 4.9 to 9.5 and the equation of linearization was $k_{o}$ = 0.00565 ${\times}$ [pH] + 0.0069 at ozone/bromide process. The denitrification reaction of ammonia was superior as the pH increase in the presence of bromide.

Application of Ti-salt Coagulant and Sludge Recycling for Phosphorus Removal in Biologically Treated Sewage Effluent (하수종말처리장의 인 처리시설에 티탄염 응집제 적용 및 슬러지 재활용)

  • Kim, Jong Beom;Park, Hee-Ju;Lee, Ki Won;Jo, A Ra;Kim, Myung Wan;Lee, Young Jun;Park, Se Min;Lee, Kwang Young;Shon, Ho Kyong;Kim, Jong-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.257-262
    • /
    • 2013
  • As the regulation of total phosphorus (T-P) concentration in biologically treated sewage effluent is reduced to 0.2~2 mg/L, flocculation process is recommended to remove T-P. In this study, the performance of Ti-salt coagulant was investigated in terms of dosage and pH in removing phosphorus and the collected sludge after Ti-salt flocculation was calcined to produce titania for effective sludge recycling. The flocculation performance was carried out using two methods: sedimentation and air floatation. Both methods were feasible to apply for Ti-salt flocculation. Ti-salt flocculation was effective in reducing phosphorus concentration in sewage effluent, which showed similar performance of alum ($Al_2(SO_4)_3$). The calcined sludge was recycled to titania which is the widely used metal oxide. Titania produed from Ti-salt sludge indicated similar characteristics of commercially-available P-25 in regard to photocatalytic activity and surface area. Therefore, this can be easily adopted to titania application by replacing P-25.

Advanced Characterization Techniques of Organic Matter in Aqueous Solutions (물 속 유기물의 고도 특성 분석)

  • Shon, Ho Kyong;Vigneswaran, Saravanamuthu;Kandasamy, Jaya;Kim, Jong Beom;Kim, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • Water is the most precious resource to human being, but it is polluted by different organic compounds. Organic matter (OM) in aqeous solutions is one of the important parameters of concern for human and environmental impact, and thus, it is essential to better characterize specifically targeted organic matter in aggregated and individual level of concentrations. This review presents different analytical tools and protocols to investigate detailed properties and characterization. Physical, chemical and biological aspects of OM are envisaged in terms of traditional and advanced measurement methods.