• Title/Summary/Keyword: Environmental Sensors

Search Result 985, Processing Time 0.026 seconds

Experimental Analysis of Weigh-in-Motion Sensor Installed Post-Tensioned Concrete Pavement Behavior (고속축중계가 설치된 포스트텐션 콘크리트 포장의 실험적 거동 분석)

  • Park, Hee-Beom;Bae, Jong-Oh;Kim, Seong-Min;An, Zu-Og
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.139-146
    • /
    • 2010
  • This research was conducted to analyze the behavior of the post-tensioned concrete pavement (PTCP) system in which weigh-in-motion (WIM) sensors were installed. One lane of PTCP was constructed after removing the existing asphalt pavement. The frictional resistance between the slab and the underlying layer should be small enough for the PTCP slab to properly have prestresses by tensioning. By performing an experimental construction of PTCP, the friction effects and the longitudinal displacements of PTCP under environmental loads were investigated. Based on the knowledge obtained from the experiments, the actual PTCP sections including WIM sensors were constructed and the curling behavior of the system was investigated. As a result, the behavior of the PTCP system was not affected by the existence of WIM sensors, and the appropriate PTCP system when installing WIM sensors in it could be developed.

A Study on the Improvement of Comfortable Living Environment by Using real-time Sensors

  • KIM, Chang-Mo;KIM, Ik-Soo;SHIN, Deok-Young;LEE, Hee-Sun;KWON, Seung-Mi;SHIN, Jin-Ho;SHIN, YongSeung
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.4
    • /
    • pp.19-31
    • /
    • 2022
  • Purpose: This study was conducted to identify indoor air quality in various living spaces using sensors that can measure noise, vibration, fine dust, and odor in real time and to propose optimal indoor air quality maintenance management using Internet of Things(IoT). Research design, data and methodology: Using real-time sensors to monitor physical factors and environmental air pollutants that affect the comfort of the residential environment, Noise, Vibration, Atmospheric Pressure, Blue Light, Formaldehyde, Hydrogen Sulfide, Illumination, Temperature, Ozone, PM10, Aldehyde, Amine, LVOCs and TVOCs were measured. It were measured every 1 seconds from 4 offices and 4 stores on a small scale from November 2018 to January 2019. Results: The difference between illuminance and blue light for each measuring point was found to depend on lighting time, and the ratio of blue light in total illumination was 0.358 ~ 0.393. Formaldehyde and hydrogen sulphide were found to be higher than those that temporarily attract people in an indoor office space that is constantly active, requiring office air ventilation. The noise was found to be 50dB higher than the office WHO recommendation noise level of 35 ~ 40dB. The most important factors for indoor environmental quality were temperature> humidity> illumination> blue light in turn. Conclusions: Various factors that determine the comfort of indoor living space can be measured with real-time sensors. Further, it is judged that the use of IoT can help maintain indoor air quality comfortably.

Generation of High Resolution DEM of Jeju Island

  • Lee, Chang-Won;Kim, Duk-Jin;Moon, Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.831-833
    • /
    • 2003
  • We have evaluated the accuracy of digital elevation models of Jeju island generated with three different sensors, NASA JPL TOPSAR, JERS-1 SAR, KOMPSAT-1 EOC using Interferometric SAR and stereo photogrammetry. Characteristics and limitations of each method are described.

  • PDF

Sensorless Operation of DC Motors Using State Observers and Compensators (상태 관측기 및 보상기를 이용한 전동기의 센서리스 운전)

  • Kim, Yoon-Ho;Yoon, Byung-Do;Yang, Chan-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.366-370
    • /
    • 1990
  • Generally, when servo system is used, various sensors are required to have comparison and compensation to the reference value. However, the sensors are relatively expensive, and cannot be always implemented because of the limit of space or the environmental conditions. In this paper, state observer systems without sensors are investigated. State observer systems are required to estimate the states quickly and exactly without being affected by the disturbances. Thus, in this paper, the effects of systems poles and observer poles are studies. In addition, the parameter variations are also considered to evaluate the effect of them to the observer based systems. Also, in this paper a whole system which includes compensators, observers and loads are considered and analysed by using numerical simulations.

  • PDF

Spatial Query Processing Based on Minimum Bounding in Wireless Sensor Networks

  • Yang, Sun-Ok;Kim, Sung-Suk
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.229-236
    • /
    • 2009
  • Sensors are deployed to gather physical, environmental data in sensor networks. Depending on scenarios, it is often assumed that it is difficult for batteries to be recharged or exchanged in sensors. Thus, sensors should be able to process users' queries in an energy-efficient manner. This paper proposes a spatial query processing scheme- Minimum Bounding Area Based Scheme. This scheme has a purpose to decrease the number of outgoing messages during query processing. To do that, each sensor has to maintain some partial information locally about the locations of descendent nodes. In the initial setup phase, the routing path is established. Each child node delivers to its parent node the location information including itself and all of its descendent nodes. A parent node has to maintain several minimum bounding boxes per child node. This scheme can reduce unnecessary message propagations for query processing. Finally, the experimental results show the effectiveness of the proposed scheme.

Individualized Exercise and Diet Recommendations: An Expert System for Monitoring Physical Activity and Lifestyle Interventions in Obesity

  • Nam, Yunyoung;Kim, Yeesock
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2434-2441
    • /
    • 2015
  • This paper proposes an exercise recommendation system for treating obesity that provides systematic recommendations for exercise and diet. Five body indices are considered as indicators for recommend exercise and diet. The system also informs users of prohibited foods using health data including blood pressure, blood sugar, and total cholesterol. To maximize the utility of the system, it displays recommendations for both indoor and outdoor activities. The system is equipped with multimode sensors, including a three-axis accelerometer, a laser, a pressure sensor, and a wrist-mounted sensor. To demonstrate the effectiveness of the system, field tests are carried out with three participants over 20 days, which show that the proposed system is effective in treating obesity.

Study on Building a Structural Health Monitoring System for Uldolmok Tidal Current Power Plant (울돌목 시험조류발전소 구조물 안전감시시스템 구축에 관한 연구)

  • Yi, Jin-Hak;Park, Woo-Sun;Park, Jin-Soon;Lee, Kwang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.635-638
    • /
    • 2007
  • In this paper, we described the fundamental concepts of proposed structural health monitoring system for Uldolmok Tidal Current Power Plant focusing on the use of smart sensors including fiber bragg grating sensors and macro fiber composite sensors. The structural health monitoring system can play an important role to maintain the structural safety for offshore structures like as bridges and high-rise buildings. In the case of tidal current power plant, the monitoring system is much more important since the structures are usually constructed at the site with severer environmental loadings such as high current speed.

  • PDF

Issues in structural health monitoring employing smart sensors

  • Nagayama, T.;Sim, S.H.;Miyamori, Y.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.299-320
    • /
    • 2007
  • Smart sensors densely distributed over structures can provide rich information for structural monitoring using their onboard wireless communication and computational capabilities. However, issues such as time synchronization error, data loss, and dealing with large amounts of harvested data have limited the implementation of full-fledged systems. Limited network resources (e.g. battery power, storage space, bandwidth, etc.) make these issues quite challenging. This paper first investigates the effects of time synchronization error and data loss, aiming to clarify requirements on synchronization accuracy and communication reliability in SHM applications. Coordinated computing is then examined as a way to manage large amounts of data.

Study on Comparing the Performance of Linear CCD sensor with PSD sensor for Distance Measurement (변위측정을 위한 선형 CCD 센서와 PSD 센서의 성능 비교에 관한 연구)

  • Shin, Myung-Kwan;Park, Kyi-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2167-2169
    • /
    • 2004
  • The main concern for a displacement measurement is the performance of a sensor such as speed, resolution, accuracy and so on. The mainly used sensors are a linear CCD(charge coupled device) and a PSD(position sensitive detection) as a non-contact type. The output value of a linear CCD is so sensitive to a temperature change that it needs a cooling device. Additionally, because of its structural problem, there are some limits in resolution and speed, and it needs a complex image processing algorithm. Also, PSD has some disadvantages like sensitivity to environmental lights and nonlinearities. Like this, a linear CCD and PSD have their own characteristics and if we know them well, we can choose the one of the two sensors properly in some applications according to purposes. In this paper, I performed which one is superior to the other among the two sensors in terms of accuracy, resolution, measurement speed, signal to noise ratio.

  • PDF

Improvement of reliability of an ISFET pH-meter by employing multiple sensors

  • Chang, Kee-Seok;Cho, Byung-Woog;Kim, Chang-Soo;Choi, Sang-Bok;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.131-136
    • /
    • 1997
  • The ISFET(ion sensitive field effect transistor), a semiconductor ion sensor, has many advantages over conventional ion sensors. Various single-sensor type ISFET pH-meters have been developed. However, they could not be applied in fields because their performances are directly affected by the sensor condition. With only one sensor, the system could be easily damaged from environmental factors, and reliability of it is decreased. Therefore, a 4-channel PH-meter system is proposed to improve the reliability of ISFET pH-meter. It has 4 ISFETS as ion sensor, and a software which contains a new calibration and measurement algorithm appropriate to the system. The reliability of the system was proved by measuring hydrogen ion concentration in the pH standard solutions and buffer solutions.

  • PDF